Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities
In this paper, the connection between the functional inequalities $$ f\Big(\frac{x+y}{2}\Big)\leq\frac{f(x)+f(y)}{2}+\alpha_J(x-y) \qquad (x,y\in D)$$ and $$ \int_0^1f\big(tx+(1-t)y\big)\rho(t)dt \leq\lambda f(x)+(1-\lambda)f(y) +\alpha_H(x-y) \qquad (x ...
Makó, Judit, Páles, Zsolt
core +1 more source
The connection between generalized convexity and analytic operators is deeply rooted in functional analysis and operator theory. To put the ideas of preinvexity and convexity even closer together, we might state that preinvex functions are extensions of convex functions. Integral inequalities are developed using different types of order relations, each
Zareen A. Khan +2 more
wiley +1 more source
New estimates for Hermite–Hadamard–Fejer-type inequalities containing Raina fractional integrals
The Hermite–Hadamard–Fejér-type inequality is an effective utensil for examining upper and lower estimations of the integrals of convex functions. In this study, the power mean inequality and Hölder inequality are employed.
Maria Tariq +3 more
doaj +1 more source
Approximate Hermite-Hadamard inequality [PDF]
The main results of this paper offer sufficient conditions in order that an approximate lower Hermite-Hadamard type inequality imply an approximate Jensen convexity property.
Házy, Attila, Makó, Judit
core
Hermite-Hadamard type inequalities for Wright-convex functions of several variables
We present Hermite--Hadamard type inequalities for Wright-convex, strongly convex and strongly Wright-convex functions of several variables defined on ...
Wasowicz, Sz., Śliwińska, D.
core +2 more sources
Fejér and Hermite-Hadamard type inequalities for differentiable h-convex and quasi convex functions with applications [PDF]
Sofian T. Obeidat +2 more
openalex +1 more source
Generalization of q‐Integral Inequalities for (α, ℏ − m)‐Convex Functions and Their Refinements
This article finds q‐ and h‐integral inequalities in implicit form for generalized convex functions. We apply the definition of q − h‐integrals to establish some new unified inequalities for a class of (α, ℏ − m)‐convex functions. Refinements of these inequalities are given by applying a class of strongly (α, ℏ − m)‐convex functions. Several q‐integral
Ria H. Egami +5 more
wiley +1 more source
Further refinements of the Cauchy-Schwarz inequality for matrices [PDF]
Let $A, B$ and $X$ be $n\times n$ matrices such that $A, B$ are positive semidefinite. We present some refinements of the matrix Cauchy-Schwarz inequality by using some integration techniques and various refinements of the Hermite--Hadamard inequality ...
Bakherad, Mojtaba
core
Refined and Generalized Versions of Hölder’s Inequality via Schur Convexity of Functions
In this paper, we introduce a class of functions associated with Hölder’s inequality and show the Schur convexities of these functions. With the help of Schur convexity, several improved versions of Hölder’s inequality are established. The results obtained here are the generalizations and refinements of the existing results for Hölder’s inequality.
Shanhe Wu, Raúl E. Curto
wiley +1 more source
Jensen–Mercer inequality for GA-convex functions and some related inequalities
In this paper, firstly, we prove a Jensen–Mercer inequality for GA-convex functions. After that, we establish weighted Hermite–Hadamard’s inequalities for GA-convex functions using the new Jensen–Mercer inequality, and we establish some new inequalities ...
İmdat İşcan
doaj +1 more source

