Results 281 to 290 of about 3,024,874 (379)

Electrosynthesis of Bioactive Chemicals, From Ions to Pharmaceuticals

open access: yesAdvanced Functional Materials, EarlyView.
This review discusses recent advances in electrosynthesis for biomedical and pharmaceutical applications. It covers key electrochemical materials enabling precise delivery of ions and small molecules for cellular modulation and disease treatment, alongside catalytic systems for pharmaceutical synthesis.
Gwangbin Lee   +4 more
wiley   +1 more source

Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase

open access: yesAdvanced Functional Materials, EarlyView.
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint   +6 more
wiley   +1 more source

Oral Dosed Organo‐Silica Nanoparticles Restore Glucose Homeostasis and β‐Cell Function in Diabetes Rats

open access: yesAdvanced Functional Materials, EarlyView.
An oral nanoplatform, MOP@T@D, which can maintain glucose homeostasis and restore islet β cells in diabetic rats is developed. It achieves efficient intestinal absorption and liver‐targeted delivery. The nanoparticle disintegrates only in response to hyperglycemia to release insulin on demand and provides antioxidant protection through selenoprotein ...
Chenxiao Chu   +14 more
wiley   +1 more source

Synthetic Nanobiology Actuated Lipometabolic Cell Factory for Autologous Tumor Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
FA plays a crucial role in the interaction between tumor cells and the tumor microenvironment, especially for the immune response. A biocatalytic immunoenhancement strategy is developed to boost antitumor immunity by FA metabolic orientation to ceramide. Through the design of this delicate catalytic immunoenhancement strategy, the synthetic nanobiology
Shoujie Zhao   +8 more
wiley   +1 more source

Germanane Quantum Dots Promote Metabolic Reprogramming of Immune Cells Toward Regulatory T Cells and Suppress Inflammation In Vitro and In Vivo

open access: yesAdvanced Functional Materials, EarlyView.
Metabolic changes in immune cells direct the phenotype and function of the host immune system. Smart nanomaterials must target metabolic pathways to direct immune cell fate. This study reports the fabrication and first application of germanane quantum dots (GeHQDs) to modulate inflammation in vitro and in vivo.
Abhay Srivastava   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy