Tailoring the Properties of Functional Materials With N‐Oxides
The properties of materials bearing N‐oxide groups are often dominated by the polar N+─O− bond. It provides hydrophilicity, selective ion‐binding, electric conductivity, or antifouling properties. Many of the underlying mechanisms have only recently been discovered, and the interest in N‐oxide materials is rapidly growing.
Timo Friedrich +5 more
wiley +1 more source
Peptide Sequencing With Single Acid Resolution Using a Sub‐Nanometer Diameter Pore
To sequence a single molecule of Aβ1−42–sodium dodecyl sulfate (SDS), the aggregate is forced through a sub‐nanopore 0.4 nm in diameter spanning a 4.0 nm thick membrane. The figure is a visual molecular dynamics (VMD) snapshot depicting the translocation of Aβ1−42–SDS through the pore; only the peptide, the SDS, the Na+ (yellow/green) and Cl− (cyan ...
Apurba Paul +8 more
wiley +1 more source
Ideal efficacy photoswitching for chromocontrol of TRPC4/5 channel functions in live tissues. [PDF]
Müller M +19 more
europepmc +1 more source
Ideal body mass index determined by mortality in Europe, and adequate high protein and low carbohydrate diet to maintain bodyweight [PDF]
Kohji Shirai
openalex +1 more source
Multifunctional Microstructured Surfaces by Microcontact Printing of Reactive Microgels
Reactive poly(N‐vinylcaprolactam‐co‐glycidyl methacrylate) microgels are used as functional inks to create surface‐grafted arrays on glass via microcontact printing. The patterns (10–50 µm widths and spacings) enable stable binding and post‐functionalization with dyes and peptides.
Inga Litzen +4 more
wiley +1 more source
Population Pharmacokinetics and Model-Informed Dose Optimization of Teicoplanin in Adults with Hematological Malignancies. [PDF]
García-Hervalejo M +4 more
europepmc +1 more source
48 Ideal Protein for Sows: Consideration of Balances Among a Sow, Fetuses, Mammary Glands, and Milk. [PDF]
Sung Woo Kim, R. A. Easter
openalex +1 more source
Robust Bio‐Textiles Via Mycelium‐Cellulose Interface Engineering
This work introduces a new class of sustainable textiles by growing mycelium, the root‐like structure of fungi, into cellulose‐based fabrics. This semi‐interpenetrating mycelium‐cellulose fiber network combines the strength and breathability of natural fibers with the water‐resistant and adhesive properties of mycelium, resulting in a robust, scalable,
Wenhui Xu +7 more
wiley +1 more source

