Results 271 to 280 of about 16,557,675 (399)

PARP inhibition and pharmacological ascorbate demonstrate synergy in castration‐resistant prostate cancer

open access: yesMolecular Oncology, EarlyView.
Pharmacologic ascorbate (vitamin C) increases ROS, disrupts cellular metabolism, and induces DNA damage in CRPC cells. These effects sensitize tumors to PARP inhibition, producing synergistic growth suppression with olaparib in vitro and significantly delayed tumor progression in vivo. Pyruvate rescue confirms ROS‐dependent activity.
Nicolas Gordon   +13 more
wiley   +1 more source

A Landscape of Pharmacogenomic Interactions in Cancer

open access: yesCell, 2016
F. Iorio   +38 more
semanticscholar   +1 more source

LDAcoop: Integrating non‐linear population dynamics into the analysis of clonogenic growth in vitro

open access: yesMolecular Oncology, EarlyView.
Limiting dilution assays (LDAs) quantify clonogenic growth by seeding serial dilutions of cells and scoring wells for colony formation. The fraction of negative wells is plotted against cells seeded and analyzed using the non‐linear modeling of LDAcoop.
Nikko Brix   +13 more
wiley   +1 more source

Plecstatin inhibits hepatocellular carcinoma tumorigenesis and invasion through cytolinker plectin

open access: yesMolecular Oncology, EarlyView.
The ruthenium‐based metallodrug plecstatin exerts its anticancer effect in hepatocellular carcinoma (HCC) primarily through selective targeting of plectin. By disrupting plectin‐mediated cytoskeletal organization, plecstatin inhibits anchorage‐dependent growth, cell polarization, and tumor cell dissemination.
Zuzana Outla   +10 more
wiley   +1 more source

A kinetic model for SCR coated particulate filters—Effect of ammonia-soot interactions

open access: green, 2018
Lidija V. Trandafilović   +5 more
openalex   +2 more sources

Genome-Wide Mapping of in Vivo Protein-DNA Interactions

open access: yesScience, 2007
David S. Johnson   +3 more
semanticscholar   +1 more source

Recurrent cancer‐associated ERBB4 mutations are transforming and confer resistance to targeted therapies

open access: yesMolecular Oncology, EarlyView.
We show that the majority of the 18 analyzed recurrent cancer‐associated ERBB4 mutations are transforming. The most potent mutations are activating, co‐operate with other ERBB receptors, and are sensitive to pan‐ERBB inhibitors. Activating ERBB4 mutations also promote therapy resistance in EGFR‐mutant lung cancer.
Veera K. Ojala   +15 more
wiley   +1 more source

Home - About - Disclaimer - Privacy