Results 111 to 120 of about 436,144 (334)

Suppression laws for multiparticle interference in Sylvester interferometers [PDF]

open access: yesPhysical Review A, 2015
Quantum interference of correlated particles is a fundamental quantum phenomenon which carries signatures of the statistics properties of the particles, such as bunching or anti-bunching. In presence of particular symmetries, interference effects take place with high visibility, one of the simplest cases being the suppression of coincident detection in
openaire   +4 more sources

In vitro properties of patient serum predict clinical outcome after high dose rate brachytherapy of hepatocellular carcinoma

open access: yesMolecular Oncology, EarlyView.
Following high dose rate brachytherapy (HDR‐BT) for hepatocellular carcinoma (HCC), patients were classified as responders and nonresponders. Post‐therapy serum induced increased BrdU incorporation and Cyclin E expression of Huh7 and HepG2 cells in nonresponders, but decreased levels in responders.
Lukas Salvermoser   +14 more
wiley   +1 more source

A synthetic benzoxazine dimer derivative targets c‐Myc to inhibit colorectal cancer progression

open access: yesMolecular Oncology, EarlyView.
Benzoxazine dimer derivatives bind to the bHLH‐LZ region of c‐Myc, disrupting c‐Myc/MAX complexes, which are evaluated from SAR analysis. This increases ubiquitination and reduces cellular c‐Myc. Impairing DNA repair mechanisms is shown through proteomic analysis.
Nicharat Sriratanasak   +8 more
wiley   +1 more source

Quantum statistics can suppress classical interference [PDF]

open access: yesPhysical Review A, 2001
Classical optical interference experiments correspond to a measurement of the first-order correlation function of the electromagnetic field. The converse of this statement: experiments that measure the first order correlation functions do not distinguish between the quantum and classical theories of light, does not always hold.
openaire   +2 more sources

Adaptaquin is selectively toxic to glioma stem cells through disruption of iron and cholesterol metabolism

open access: yesMolecular Oncology, EarlyView.
Adaptaquin selectively kills glioma stem cells while sparing differentiated brain cells. Transcriptomic and proteomic analyses show Adaptaquin disrupts iron and cholesterol homeostasis, with iron chelation amplifying cytotoxicity via cholesterol depletion, mitochondrial dysfunction, and elevated reactive oxygen species.
Adrien M. Vaquié   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy