Results 151 to 160 of about 76,108 (294)

Extracellular Vesicles of Streptococcus anginosus Mediate Gastritis via Epithelial Barrier Disruption and Macrophage‐driven Inflammation

open access: yesAdvanced Science, EarlyView.
Streptococcus anginosus extracellular vesicles (SA‐EVs) accumulate in gastric tissue, disrupt epithelial tight junctions, and induce gastritis characterized by neutrophil infiltration and elevated cytokines (TNF‐α, IL‐6, IL‐17A). Proteomics identifies TMPC and FBP62 as key SA‐EVs virulence factors; their genetic deletion attenuates inflammation ...
Ying Gong   +12 more
wiley   +1 more source

Advances in intestinal flora for the development, diagnosis and treatment of CRC. [PDF]

open access: yesFront Microbiol
Hu R   +8 more
europepmc   +1 more source

Studies on intestinal flora

open access: yes, 1968
Imperial Users ...
Drasar, Bohumil Sawdon   +1 more
openaire   +1 more source

Intestinal Flora in Aging: a Scientific Perspective on Food Intervention

open access: diamond
Xuewei Ye   +12 more
openalex   +1 more source

Biodegradable Adhesive Systems for Bio‐Integrated Applications

open access: yesAdvanced Science, EarlyView.
Biodegradable adhesives provide temporary yet reliable adhesion while degrading into safe, non‐toxic by‐products under physiological or environmental conditions. This review summarizes recent developments in physical and chemical adhesion mechanisms—including hydrogen bonding, catechol chemistry, amine‐carboxyl coupling, and emerging diazirine and urea
Won Bae Han   +6 more
wiley   +1 more source

TRIM38 Suppresses Breast Cancer Progression via Modulating SQSTM1 Ubiquitination and Autophagic Flux

open access: yesAdvanced Science, EarlyView.
TRIM38, an E3 ubiquitin ligase, suppresses breast cancer progression by inhibiting proliferation, migration, and invasion. Downregulated in breast tumor, its loss correlates with poor prognosis. Mechanistically, TRIM38 mediates K63‐linked ubiquitination of SQSTM1/p62 at K420, disrupting SQSTM1‐LC3 interaction and blocking autophagic flux.
Shan Jiang   +14 more
wiley   +1 more source

Discovery of a Novel DNMT1 Inhibitor with Improved Efficacy in Treating β‐Thalassemia

open access: yesAdvanced Science, EarlyView.
Context of Research: β‐thalassemia affects millions worldwide. DNMT inhibitors are effective HbF‐inducers that benefit patients with β‐thalassemia. Existing DNMT inhibitors are not approved for β‐thalassemia treatment due to dose‐limiting toxicity.What We Find: DMT207 traps DNMT1 into helix‐kinked inactive conformation and enhances its interaction with
Yijie Shen   +19 more
wiley   +1 more source

Home - About - Disclaimer - Privacy