Results 141 to 150 of about 32,949 (273)

Nap1L4a Cooperates with Scl/Klf1 to Recruit H2A.Z in Mediating Interactions Among Cis‐Regulatory Elements and Transcription Required for Primitive Erythropoiesis in Zebrafish

open access: yesAdvanced Science, EarlyView.
Nap1l4a is required in erythropoiesis and hypoxia responses via physical interaction with Klf1 and Scl to recruit the histone variant H2A.Z. This facilitates its associated cis‐regulatory element (CRE) remodeling and the consequent chromatin assembly, and activates the transcription of erythroid lineage‐specific genes.
JiaHao Shi   +10 more
wiley   +1 more source

Palmitoylation‐Mediated Ubiquitination of SRPK1 Regulates Ferroptosis in High‐Fat‐Induced Erectile Dysfunction

open access: yesAdvanced Science, EarlyView.
Elevated exogenous palmitic acid promotes the S‐palmitoylation of SRPK1 in endothelial cells, a dynamic process governed by ZDHHC24 and APT1. This post‐translational modification strengthens the interaction between SRPK1 and the E3 ubiquitin ligase MIB1, thereby facilitating the proteasomal degradation of SRPK1.
Xiao‐Hui Tan   +11 more
wiley   +1 more source

The KDM6B/SLC10A2 Axis Suppresses MDSCs Recruitment via ERK/AP‐1 Signaling in Colorectal Cancer

open access: yesAdvanced Science, EarlyView.
In wild‐type intestinal epithelial cells, KDM6B demethylates SLC10A2 to promote its expression, after which SLC10A2 suppresses ERK phosphorylation, inhibiting AP‐1 (Fos/Jun) transcription and chemokine production. In KDM6B‐deficient intestinal epithelial cells, SLC10A2 methylation increases, and its expression decreases.
Zhibo Hu   +16 more
wiley   +1 more source

Recurrent gastrointestinal stromal tumor with c-KIT double exon mutations: A rare case report. [PDF]

open access: yesCytojournal
Zhu N   +8 more
europepmc   +1 more source

Microcystin‐LR Triggers Renal Tubular Ferroptosis Through Epigenetic Repression of GPX4: Implications for Environmental Nephrotoxicity

open access: yesAdvanced Science, EarlyView.
MC‐LR stabilizes DNMT1/3a by blocking their ubiquitin‐mediated degradation, leading to Gpx4 promoter hypermethylation and E2F4/NCoR‐associated transcriptional repression, which drives renal tubular ferroptosis in mice. Pharmacological inhibition of DNA methylation (SGI‐1027) or ferroptosis (Fer‐1) disrupts this DNMT‐GPX4 axis, thereby alleviating MC‐LR‐
Shaoru Zhang   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy