Results 201 to 210 of about 261,233 (267)

The giant panda gut harbors a high diversity of lactic acid bacteria revealed by a novel culturomics pipeline

open access: gold
Wenping Zhang   +16 more
openalex   +1 more source

4D Printing of Magnetically Responsive Shape Memory Polymers: Toward Sustainable Solutions in Soft Robotics, Wearables, and Biomedical Devices

open access: yesAdvanced Science, EarlyView.
Merging 4D printing with magneto‐responsive shape memory polymers opens new avenues for intelligent, reconfigurable systems. This review navigates cutting‐edge fabrication techniques, magnetic fillers, and smart polymer matrices, unveiling their potential in soft robotics, biomedical devices, and wearable tech.
Kiandokht Mirasadi   +7 more
wiley   +1 more source

Metabolic Reprogramming Driven by Trophoblasts and Decidual XCR1+PMN‐MDSC Crosstalk Controls Adverse Outcomes Associated With Advanced Maternal Age

open access: yesAdvanced Science, EarlyView.
The interaction between trophoblasts and decidual polymorphonuclear myeloid‐derived suppressor cells (dPMN‐MDSCs) via the XCL1–XCR1 axis is crucial for fetal development during the third trimester. Disruption of this axis impairs FOXO1 activity and causes metabolic imbalance in dPMN‐MDSCs, contributing to adverse outcomes associated with advanced ...
Meiqi Chen   +12 more
wiley   +1 more source

Lactic acid improves Treg manufacturing and <i>in vivo</i> function. [PDF]

open access: yesMol Ther Methods Clin Dev
Tuomela K   +10 more
europepmc   +1 more source

Flipping the Switch: MeCP2‐Mediated Lactylation Rewires Microglial Metabolism and Inflammation via the HK2/mTOR Axis in Poststroke Neuroinflammation

open access: yesAdvanced Science, EarlyView.
Stroke‐induced lactate accumulation promotes p300‐mediated lactylation of methyl‐CpG binding protein 2 (MeCP2) at lysine 210, which reprograms microglial metabolism toward glycolysis and activates the hexokinase 2 (HK2)/mTOR axis. This cascade promotes proinflammatory responses and impairs neurofunctional outcomes.
Zengyu Zhang   +12 more
wiley   +1 more source

Organic Electrochemical Transistors in Tissue‐Interfaced Bioelectronics

open access: yesAdvanced Science, EarlyView.
This article reviews the design, fabrication, and biological application of organic electrochemical transistors (OECTs), emphasizing their potential in tissue‐interfaced bioelectronics. It covers the fundamental principles of OECTs, strategies for enhancing tissue interfacing, and the development of skin‐mounted and implantable systems.
Ruixiang Bai, Zeyu Zhao, Feng Yan
wiley   +1 more source

Home - About - Disclaimer - Privacy