Results 111 to 120 of about 21,085 (291)
Lateral flow biosensors are a leading technology in point-of-care diagnostics due to their simplicity, rapidness and low cost. Their primacy in this arena continues through technological breakthroughs such as multiplexing: the detection of more than one biomarker in a single assay.
Li, Jia, Macdonald, J
openaire +3 more sources
Simultaneous Detection of Dual Nucleic Acids Using a SERS-Based Lateral Flow Assay Biosensor [PDF]
A new class of surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) biosensor has been developed for the simultaneous detection of dual DNA markers. The LFA strip in this sensor was composed of two test lines and one control line.
Xiaokun Wang +5 more
openaire +2 more sources
This review explores recent advances in digital micromirror device (DMD)‐based lithography, focusing on its programmable light modulation, multi‐material compatibility, and dimensional patterning strategies. It highlights innovations from optical system design to materials integration and multifunctional applications, positioning DMD lithography as a ...
Yubin Lee +5 more
wiley +1 more source
Nanoliter-Fabricated Paper-Based Colorimetric Lateral Flow Strip for Urea Detection
A nanoliter-scale fabrication method was applied to construct a colorimetric lateral flow strip for urea detection (Urea-CLFS). The device involves two main papers: a nitrocellulose membrane (NC-Mb) for urease enzyme immobilization and chromatography ...
Supatinee Kongkaew +2 more
doaj +1 more source
Here we report a lateral flow aptasensor (LFA) for the simultaneous detection of platelet-derived growth factor-BB (PDGF-BB) and thrombin. Two pairs of aptamers, which are specific against PDGF-BB and thrombin, respectively, were used to prepare the LFA.
Guodong Liu, Anant S Gurung, Wanwei Qiu
doaj +1 more source
Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening [PDF]
Grating Coupled Interferometry (GCI) using high quality waveguides with two incoupling and one outcoupling grating areas is introduced to increase and precisely control the sensing length of the device; and to make the sensor design suitable for plate ...
Cottier, Kaspar +3 more
core +1 more source
Printed 2.5D‐Microstructures with Material‐Specific Functionalization for Tunable Biosensing
The 2.5D‐MiSENSE platform integrates a microstructured biosensor with an in‐line milking pipeline to enable real‐time detection of mastitis biomarkers during active milk flow. The system uses a 2.5D microengineered surface and patterned electrodes to enhance milk–sensor interaction.
Matin Ataei Kachouei +2 more
wiley +1 more source
Functional selectivity of GPCR-directed drug action through location bias. [PDF]
G-protein-coupled receptors (GPCRs) are increasingly recognized to operate from intracellular membranes as well as the plasma membrane. The β 2 -adrenergic GPCR can activate G s -linked cyclic AMP (G s -cAMP) signaling from endosomes.
Conti, Marco +6 more
core +3 more sources
This review explores advances in wearable and lab‐on‐chip technologies for breast cancer detection. Covering tactile, thermal, ultrasound, microwave, electrical impedance tomography, electrochemical, microelectromechanical, and optical systems, it highlights innovations in flexible electronics, nanomaterials, and machine learning.
Neshika Wijewardhane +4 more
wiley +1 more source
A signal-enhanced lateral flow strip biosensor has been constructed for ultrasensitive and on-site visual detection of bisphenol A (BPA). The signal amplification principle is based on the capacity of binding a large number of antibody-assembled gold ...
Xiayu Peng +6 more
doaj +1 more source

