Results 81 to 90 of about 19,535,634 (199)

Multidirectionally Patterned Interdigital Transducers for Enhancing Acoustofluidic Streaming with Flexible Printed Circuit Board

open access: yesAdvanced Functional Materials, EarlyView.
A reconfigurable and multidirectional interdigital transducer (M‐IDT) on a flexible printed circuit board provides a practical platform for acoustofluidic research. It simplifies and accelerates prototyping, enabling cost‐effective exploration of wave modes and fluid dynamics.
Mercedes Stringer   +11 more
wiley   +1 more source

Tin‐Based 2D/3D Perovskite Vertical Heterojunction for High‐Performance Synaptic Phototransistors

open access: yesAdvanced Functional Materials, EarlyView.
Phototransistors based on tin‐based 2D/3D perovskite heterostructures show an ultrahigh responsivity and detectivity at a low gate voltage across a broad wavelength region from ultraviolet to near‐infrared. The devices can replicate neuromorphic learning and remembering behaviors to light stimuli, in addition to electric depression and memory erasure ...
Hok‐Leung Loi   +10 more
wiley   +1 more source

Polar Pore Surface of Polyamide Membranes Enabling Efficient Solvent Mixture Separation

open access: yesAdvanced Functional Materials, EarlyView.
A polyamide membrane with polar pore surfaces and relatively large pore is fabricated through interfacial polymerization between polyethyleneimine and trimesoyl chloride. Rapid separation of solvents with polarity differences is achieved by the synergistic effects of pore polarity and size sieving.
Aiwen Zhang   +10 more
wiley   +1 more source

Multi‐Scaled Cellulosic Nanonetworks from Tunicates

open access: yesAdvanced Functional Materials, EarlyView.
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj   +10 more
wiley   +1 more source

Artificial Modulation of the Hydrogen Evolution Reaction Kinetics via Control of Grain Boundaries Density in Mo2C Through Laser Processing

open access: yesAdvanced Functional Materials, EarlyView.
A laser‐driven strategy enables precise microstructural modulation of Mo₂C, achieving nanoscale grain control (15.6 ± 5 nm) and an ultrahigh grain boundary density (130 µm−1). Moreover, high‐angle grain boundaries enhance active sites, facilitate electron transport, and optimize hydrogen adsorption kinetics, significantly reducing overpotential.
Seok‐Ki Hyeong   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy