Results 41 to 50 of about 1,143,398 (157)
We show the method to expand functions being integrable with a weight on the interval, and satisfying condition of integral Lipschitz type, on the whole line.
openaire +2 more sources
We introduce new efficient and accurate first order finite volume‐type numerical schemes, for the non‐conservative one‐dimensional blood flow equations with transport, taking into account different velocity profiles. The framework is the flux‐vector splitting approach of Toro and Vázquez‐Cendón (2012), that splits the system in two subsystems of PDEs ...
Alessandra Spilimbergo +3 more
wiley +1 more source
Dynamic boundary conditions with noise for an energy balance model coupled to geophysical flows
Abstract This paper investigates a Sellers‐type energy balance model coupled to the primitive equations by a dynamic boundary condition with and without noise on the boundary. It is shown that this system is globally strongly well‐posed both in the deterministic setting for arbitrary large data in W2(1−1/p),p$W^{2(1-\nicefrac {1}{p}),p}$ for p∈[2,∞)$p \
Gianmarco Del Sarto +2 more
wiley +1 more source
The goal of this work is to look at how a nonlinear model describes hematopoiesis and its complexities utilizing commonly used techniques with historical and material links. Based on time delay, the Mackey–Glass model is explored in two instances. To offer a range, the relevance of the parameter impacting stability (bifurcation) is recorded.
Shuai Zhang +5 more
wiley +1 more source
Optimal Pooling in Claims Resolution Facilities [PDF]
A class of nonlinear stochastic processes satysfying a "Lipschitz-type strip condition" and supplied by a linear output equation, is considered. Robust asymptotic (high-gain) state estimation for nonlinear stochastic processes via differential neural ...
Ljung, Lennart +2 more
core +1 more source
We present a local convergence of the combined Newton-Kurchatov method for solving Banach space valued equations. The convergence criteria involve derivatives until the second and Lipschitz-type conditions are satisfied, as well as a new center-Lipschitz-
I. Argyros, S. Shakhno
semanticscholar +1 more source
ABSTRACT The well‐posedness results for mild solutions to the fractional neutral stochastic differential system with Rosenblatt process with Hurst index Ĥ∈12,1$$ \hat{H}\in \left(\frac{1}{2},1\right) $$ is discussed in this article. To demonstrate the results, the concept of bounded integral contractors is combined with the stochastic result and ...
Dimplekumar N. Chalishajar +3 more
wiley +1 more source
Equivalences of Nonlinear Higher Order Fractional Differential Equations With Integral Equations
ABSTRACT Equivalences of initial value problems (IVPs) of both nonlinear higher order (Riemann–Liouville type) fractional differential equations (FDEs) and Caputo FDEs with the corresponding integral equations are studied in this paper. It is proved that the nonlinearities in the FDEs can be L1$$ {L}^1 $$‐Carathéodory with suitable conditions.
Kunquan Lan
wiley +1 more source
ABSTRACT The article examines a boundary‐value problem in a bounded domain Ωε$$ {\Omega}_{\varepsilon } $$ consisting of perforated and imperforate regions, with Neumann conditions prescribed at the boundaries of the perforations. Assuming the porous medium has symmetric, periodic structure with a small period ε$$ \varepsilon $$, we analyze the limit ...
Taras Melnyk
wiley +1 more source
On the Mean‐Field Limit of Consensus‐Based Methods
ABSTRACT Consensus‐based optimization (CBO) employs a swarm of particles evolving as a system of stochastic differential equations (SDEs). Recently, it has been adapted to yield a derivative free sampling method referred to as consensus‐based sampling (CBS). In this paper, we investigate the “mean‐field limit” of a class of consensus methods, including
Marvin Koß, Simon Weissmann, Jakob Zech
wiley +1 more source

