Results 21 to 30 of about 423,686 (313)
Application of two-dimensional lamellar lithium titanate in lithium-ion anode batteries
Lithium titanate exhibits effective suppression of lithium metal plating and lithium dendrite formation, attributed to its high lithium ion diffusion coefficient and a relatively high discharge plateau of 1.55 V (vs. Li+/Li).
Jiyue Hou +9 more
doaj +1 more source
Novel ferrocene derivatives (e.g., FcPhc2) are used as an ultrathin layer hole‐blocking layer, reducing hole injection from the Ag contact. This results in an ultralow noise spectral density of 1.2 × 10−14 A Hz−1/2, and a high specific detectivity of 8.1 × 1012 Jones at −0.5 V.
Eunyoung Hong +16 more
wiley +1 more source
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous
Mingfeng Xu +5 more
wiley +1 more source
The traditional recycling process of spent lithium-ion battery(LIB) with high Mn content faces the defects of high cost of neutralization and precipitation, poor economics of Mn extraction, and serious Li loss.
Jiawei Zhang +6 more
doaj +1 more source
Metal‐tetracene dimeric complexes are synthesized through the pyridyl coordination to either Pt(II) or Pd(II). Photophysical properties are systematically compared as a function of the metal using steady‐state and time‐resolved spectroscopy. The Pt(II) dimer exhibits efficient intramolecular singlet fission and subsequent intramolecular up‐conversion ...
Yifan Bo +4 more
wiley +1 more source
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai +8 more
wiley +1 more source
Microstructure and mechanical property in diode laser melting deposited AlSi10Mg
Laser melting deposition (LMD) has great advantages and broad development prospects in the manufacture of high-performance complex aluminum alloy components. In this paper, AlSi10Mg was deposited by 5 kW diode laser, and the effects of shielding gas flow,
Xiaoting Li, Jin Wang
doaj +1 more source
Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng +7 more
wiley +1 more source
Coating the standard polypropylene separator with a porous red phosphorous nanosheet greatly improves cycling performance in Li electrode cells. The phosphorus‐based surface chemistry deactivates electrolyte solvent decomposition and enhances the cleavage of F‐containing salt, resulting in an inorganic‐dominated electrolyte interphase (SEI) composition
Jiangpeng Wang +9 more
wiley +1 more source
Research progress in high energy density anode-free lithium metal batteries
With the development of portable electronic devices and electric vehicles, the energy density of traditional lithium-ion batteries is approaching their theoretical limit.
LIANG Shuzhen +4 more
doaj +1 more source

