Results 91 to 100 of about 4,750 (141)
Towards a Noncommutative Geometric Approach to Matrix Compactification
In this paper we study generic M(atrix) theory compactifications that are specified by a set of quotient conditions. A procedure is proposed, which both associates an algebra to each compactification and leads deductively to general solutions for the ...
Ho, Pei-Ming, Wu, Yi-Yen, Wu, Yong-Shi
core +1 more source
On the M (atrix) model for M-theory on T6 [PDF]
We study consistency conditions on a M(atrix)-model which would describe M-theory on $T^6$. We argue that there is a limit in moduli space for which it becomes a 6+1D theory and study the low-energy description of extended objects in the decompactified limit.
openaire +2 more sources
DLCQ-M(atrix) description of string theory, and supergravity [PDF]
We discuss the connection between Matrix string theory and the DLCQ of string theory. Using this connection we describe the sense in which perturbative string amplitudes are reproduced in the Matrix string theory. Using recent realization of the connection between SYM and Supergravity, we suggest how to describe Matrix theory with non-flat backgrounds.
openaire +3 more sources
A supersymmetric SYK model with a curious low energy behavior
We consider N $$ \mathcal{N} $$ = 2, 4 supersymmetric SYK models that have a peculiar low energy behavior, with the entropy going like S = S 0 + (constant)T a , where a ≠ 1.
Anna Biggs +2 more
doaj +1 more source
Chaos from equivariant fields on fuzzy S 4
We examine the 5d Yang-Mills matrix model in 0 + 1-dimensions with U(4N) gauge symmetry and a mass deformation term. We determine the explicit SU(4) ≈ SO(6) equivariant parametrizations of the gauge field and the fluctuations about the classical four ...
Ü. H. Coşkun +3 more
doaj +1 more source
Bootstrap bounds on D0-brane quantum mechanics
We derive simple bootstrap bounds on correlation functions of the BFSS matrix theory/D0-brane quantum mechanics. The result strengthens and extends Polchinski’s virial theorem bound to finite energies and gives the first non-trivial bound on ⟨Tr X 2 ...
Henry W. Lin
doaj +1 more source
Introduction to M(atrix) theory and noncommutative geometry [PDF]
Noncommutative geometry is based on an idea that an associative algebra can be regarded as "an algebra of functions on a noncommutative space". The major contribution to noncommutative geometry was made by A. Connes, who, in particular, analyzed Yang-Mills theories on noncommutative spaces, using important notions that were introduced in his papers ...
Konechny, Anatoly, Schwarz, Albert
openaire +2 more sources
General Relativity in IIB matrix model
The matrix models are non-perturbative formulations of string theory, from which many believe that spacetime arises. The matrix fluctuations around the spacetime thus created should represent both matter and gravitational fields.
Pei-Ming Ho +2 more
doaj +1 more source
Long string scattering in c = 1 string theory
We study the scattering of long strings in c = 1 string theory, both in the worldsheet description and in the non-singlet sector of the dual matrix quantum mechanics. From the worldsheet perspective, the scattering amplitudes of long strings are obtained
Bruno Balthazar +2 more
doaj +1 more source
On Tachyon Condensation of Intersecting Noncommutative Branes in M(atrix) Theory
The interaction between the intersecting noncommutative D-branes (or membranes) is investigated within the M(atrix) theory. We first evaluate the spectrum of the off-diagonal fluctuation and see that there is a tachyon mode, which signals the instability
Aharony +34 more
core +1 more source

