Results 291 to 300 of about 4,300,436 (344)

Porous Decellularized Nerve Grafts Facilitate Recellularization and Nerve Regeneration in a Rat Model of Critical Long‐Gap Peripheral Nerve Injury

open access: yesAdvanced Healthcare Materials, EarlyView.
A decellularized nerve graft (DNG) is modified to generate a porous DNG (PDNG). The PDNG is used to repair a 30‐mm peripheral nerve injury (PNI) defect, and is compared with isograft, serving as the standard, and DNG, a widely used alternative. The result shows that PDNG facilitated nerve regeneration in long‐gap PNI, evidenced by better‐aligned axonal
Olawale Alimi Alimi   +10 more
wiley   +1 more source

Uniting 4D Printing and Melt Electrowriting for the Enhancement of Regenerative Small Diameter Vascular Grafts

open access: yesAdvanced Healthcare Materials, EarlyView.
A hybrid 4D printing strategy enables the fabrication of shape‐morphing, mechanically reinforced tubular constructs for vascular tissue engineering. By combining alginate‐methylcellulose hydrogels with melt electrowritten polycaprolactone fibers and protein‐based functionalization, this platform supports spatially organized co‐cultures of fibroblasts ...
Max von Witzleben   +8 more
wiley   +1 more source

Seeing inside the Body Using Wearable Sensing and Imaging Technologies

open access: yesAdvanced Healthcare Materials, EarlyView.
This review explores wearable technologies for noninvasive internal health monitoring. It categorizes approaches into indirect sensing (e.g., bioelectrical and biochemical signals) and direct imaging (e.g., wearable ultrasound and EIT), highlighting multimodal integration and system‐level innovation toward personalized, continuous healthcare.
Sumin Kim   +3 more
wiley   +1 more source

Magnetic Resonance Imaging‐Based Quantification of Endosomal Escape Using Iron Oxide Nanoparticle‐Loaded Lipid Nanoparticles

open access: yesAdvanced Healthcare Materials, EarlyView.
The therapeutic efficacy of lipid nanoparticle(LNP)‐based drugs depends on endosomal escape. However, few methods are available for quantifying the efficiency of endosomal escape in vivo. Herein, a novel method for quantifying the endosomal escape efficiency index using magnetic resonance imaging is introduced.
Somin Lee   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy