Results 111 to 120 of about 895,246 (248)

Dual‐Nanoparticle Engineered Hydrogel Reverses Bicellular Oxidative Stress to Accelerate Diabetic Fracture Healing

open access: yesAdvanced Functional Materials, EarlyView.
CD105‐LNPs and PS‐LNPs can deliver α‐lipoic acid to bone marrow mesenchymal stem cells and bone marrow‐derived macrophages, reversing high glucose‐induced oxidative stress while enhancing osteogenesis and M2 polarization. Integrating both nanoparticles into glucose‐responsive hyaluronic acid hydrogel forms DLNPs@HA hydrogel, which accelerates diabetic ...
Yanzhi Zhao   +11 more
wiley   +1 more source

Transcriptome profiling of L. infantum-infected human macrophages reveals sex-specific type I interferon induction. [PDF]

open access: yesPLoS Pathog
Bea A   +12 more
europepmc   +1 more source

Functional Hydrogel for Modulating Lipid Droplets and Neuroinflammation in Head Injury

open access: yesAdvanced Functional Materials, EarlyView.
After TBI, elevated cholesterol levels in activated microglia lead to the accumulation of cholesterol esters in lipid droplets, exacerbating neuroinflammation. A β‐cyclodextrin‐conjugated GelMA (βCD‐GelMA) hydrogel is developed to promotes cholesterol efflux and reduces LDL influx, thereby alleviating intracellular cholesterol and lipid droplet buildup.
Feixiang Chen   +9 more
wiley   +1 more source

Metal Nanoclusters for Cancer Imaging and Treatment

open access: yesAdvanced Functional Materials, EarlyView.
This review aims to provide a comprehensive summary and discussion of the core–shell design capabilities of metal nanoclusters (NCs) at the atomic level for cancer imaging and treatment. It offers essential insights into the design principles of metal NCs while also encouraging the exploration of other nanomaterials and their potential theranostic ...
Haiguang Zhu   +5 more
wiley   +1 more source

Cell‐Delivering Injectable Hydrogels with Tunable Microporous Structures Improve Therapeutic Efficacy for Volumetric Muscle Loss

open access: yesAdvanced Functional Materials, EarlyView.
The study presents an injectable hydrogel with tunable microporosity to improve mesenchymal stem cell delivery for volumetric muscle loss treatment. Mesenchymal stem cells encapsulated in porous hydrogels significantly promote the spreading, proliferation, and cytokine secretion of mesenchymal stem cells.
Hana Yasue   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy