Results 241 to 250 of about 736,655 (384)

Positive Feedback Loop of Histone Lactylation‐Driven HNRNPC Promotes Autophagy to Confer Pancreatic Ductal Adenocarcinoma Gemcitabine Resistance

open access: yesAdvanced Science, EarlyView.
Histone 3 lysine18 lactylation (H3K18la) drives heterogeneous nuclear ribonucleoprotein C (HNRNPC) overexpression, activating autophagy to mediate gemcitabine resistance by stabilizing TNF receptor‐associated factor 6 (TRAF6) mRNA. Concurrently, HNRNPC stabilizes aldehyde dehydrogenase 1 family member A3 (ALDH1A3) mRNA, which enhances glycolysis and ...
Xi‐Tai Huang   +9 more
wiley   +1 more source

PARPi Combining Nanoparticle LIN28B siRNA for the Management of Malignant Ascites

open access: yesAdvanced Science, EarlyView.
This study demonstrates that co‐inhibition of LIN28B and PARP using siLin28b/DSSP@lip‐PEG‐FA nanoparticles in combination with the PARP inhibitor BMN673 effectively suppresses the accumulation of malignant ascites associated with advanced cancers.
Yan Fang   +13 more
wiley   +1 more source

Role of Medullary AKT and p38 MAPK in Regulating Feeding of Broiler Chicks. [PDF]

open access: yesJ Poult Sci
Saneyasu T   +7 more
europepmc   +1 more source

CD168 Identifies Proliferating Pancreatic Islet Cells in Murine and Human

open access: yesAdvanced Science, EarlyView.
This study identifies CD168 as a conserved surface marker for proliferating β‐cells in mouse, human islets, and pancreatic islet tumors. CD168⁺ cells show high proliferation and low insulin expression. CD168+ cells form mostly uni‐β lineage clones, and some of the clones are multi‐lineage.
Shubo Yuan   +21 more
wiley   +1 more source

Targeting Itga8 Mitigates Neurogenic Bladder Fibrosis Driven by Trem2⁺ Macrophage‐Derived Fn1 via FAK/RhoA/ROCK Signaling

open access: yesAdvanced Science, EarlyView.
Normal bladders exhibit quiescent fibroblasts/macrophages, whereas neurogenic bladders show acute‐phase Itga8⁺ fibroblast expansion driven by Trem2⁺ macrophage‐secreted Fn1, which activates FAK/RhoA/ROCK signaling, promotes cytoskeletal remodeling, and upregulates pro‐fibrotic genes.
Jiaxin Wang   +9 more
wiley   +1 more source

Astrocytic PERK Deficiency Drives Prefrontal Circuit Dysfunction and Depressive‐Like Behaviors

open access: yesAdvanced Science, EarlyView.
Chen et al. show that the endoplasmic reticulum (ER) stress sensor PERK is downregulated in prefrontal cortex (PFC) astrocytes in major depressive disorder and in chronic‐stress mouse models. In young mice, astrocyte‐specific PERK loss reduces the synaptogenic cue thrombospondin‐1 (TSP1), leading to synaptic and circuit deficits and depressive‐like ...
Kai Chen   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy