Results 131 to 140 of about 341,603 (246)

Arithmetic sparsity in mixed Hodge settings

open access: yesBulletin of the London Mathematical Society, EarlyView.
Abstract Let X$X$ be a smooth irreducible quasi‐projective algebraic variety over a number field K$K$. Suppose X$X$ is equipped with a p$p$‐adic étale local system compatible with an admissible graded‐polarized variation of mixed Hodge structures on the complex analytification of XC$X_{\operatorname{\mathbb {C}}}$.
Kenneth Chung Tak Chiu
wiley   +1 more source

Beyond Euclid: an illustrated guide to modern machine learning with geometric, topological, and algebraic structures. [PDF]

open access: yesMach Learn Sci Technol
Papillon M   +10 more
europepmc   +1 more source

Centrality of star and monotone factorisations

open access: yesBulletin of the London Mathematical Society, EarlyView.
Abstract A factorisation problem in the symmetric group is central if conjugate permutations always have the same number of factorisations. We give the first fully combinatorial proof of the centrality of transitive star factorisations that is valid in all genera, which answers a natural question of Goulden and Jackson from 2009.
Jesse Campion Loth, Amarpreet Rattan
wiley   +1 more source

Maximal symplectic torus actions

open access: yesBulletin of the London Mathematical Society, EarlyView.
Abstract There are several different notions of maximal torus actions on smooth manifolds, in various contexts: symplectic, Riemannian, complex. In the symplectic context, for the so‐called isotropy‐maximal actions, as well as for the weaker notion of almost isotropy‐maximal actions, we give classifications up to equivariant symplectomorphism.
Rei Henigman
wiley   +1 more source

Home - About - Disclaimer - Privacy