Results 111 to 120 of about 230,209 (162)
Some of the next articles are maybe not open access.

Algebras of unbounded operators and vacuum superselection rules in quantum field theory

Theoretical and Mathematical Physics, 1984
The algebraic structure of quantum-field systems with vacuum superselection rules is analyzed in the framework of Wightman axiomatics on the basis of the mathematical formalism developed in Part I [ibid. 59, 28-48 (1984; Zbl 0559.47033)]. Two main theorems are obtained.
V. N. Sushko   +2 more
openaire   +3 more sources

Mathematical aspects of the operator algebraic approach to quantum field theory

2023
Im ersten Kapitel rekonstruieren wir die algebraische Quantentheorie und beweisen Sakais Charakterisierung von von-Neumann-Algebren, wobei wir dem Ansatz von Takesaki und Tomiyama folgen. Im zweiten Kapitel betrecten wir zusätzliche Beschränkungen aus der Relativitäts theorie die Objekte der Quantentheorie fest und untersuchen die Konsequen- zen ...
openaire   +1 more source

Некоторые алгебраические и геометрические аспекты квантовых измерений

Труды Математического института имени В. А. Стеклова, 2021
С помощью алгебраических и геометрических методов изучаются положительные операторнозначные меры. Доказано, что эти меры можно параметризовать с помощью некоторого пуассонова многообразия. Также показано, как получить симплектические листы данного пуассонова многообразия в терминах параметров этих мер.
Ilya Zhdanovskiy   +2 more
openaire   +1 more source

Physical Mathematics

, 2019
Unique in its clarity, examples, and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research.
K. Cahill
semanticscholar   +1 more source

($${{\mathbf {t}}},{{\mathbf {q}}}$$t,q)-Deformed Q-Systems, DAHA and Quantum Toroidal Algebras via Generalized Macdonald Operators

Communications in Mathematical Physics, 2017
We introduce the natural (t, q)-deformation of the Q-system algebra in type A. The q-Whittaker limit $$t\rightarrow \infty $$t→∞ gives the quantum Q-system algebra of Di Francesco and Kedem (Lett Math Phys 107(2):301–341, [DFK17]), a deformation of the ...
P. Di Francesco, R. Kedem
semanticscholar   +1 more source

Geometry and the Quantum

, 2017
The ideas of noncommutative geometry are deeply rooted in both physics, with the predominant influence of the discovery of Quantum Mechanics, and in mathematics where it emerged from the great variety of examples of “noncommutative spaces” i.e.
A. Connes
semanticscholar   +1 more source

Fundamental Mathematical Structures of Quantum Theory

2019
This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including
openaire   +2 more sources

Topics in Quantum Groups and Finite-Type Invariants: Mathematics at the Independent University of Moscow

, 1998
Algebra: Semi-infinite cohomology of quantum groups. II by S. M. Arkhipov Symmetry groups of regular polyhedra over finite fields by David Erschler Coordinate ring of the quantum Grassmannian and intertwiners for the representations of Sklyanin algebras ...
S. Arkhipov   +4 more
semanticscholar   +1 more source

The Classical Groups

, 1940
In this renowned volume, Hermann Weyl discusses the symmetric, full linear, orthogonal, and symplectic groups and determines their different invariants and representations.
H. Weyl
semanticscholar   +1 more source

Mathematical Physics in Mathematics and Physics

2001
An application of the DR-duality theory for compact groups to endomorphism categories of C*-algebras with nontrivial center by H. Baumgartel and F. Lledo Modular invariants and subfactors by J. Bockenhauer and D. E. Evans On the PCT-theorem in the theory of local observables by H. J. Borchers and J.
openaire   +2 more sources

Home - About - Disclaimer - Privacy