Results 31 to 40 of about 16,950 (147)
On pathos lict graph of a tree [PDF]
In this paper, the concept of pathos lict graph of a tree is introduced. We present a characterization of those graphs whose pathos lict graphs are planar, outerplanar, maximal outerplanar, crossing number one, eulerian and ...
Chandrasekhar, R., Muddebihal, M.H.
core +1 more source
Space-Efficient Biconnected Components and Recognition of Outerplanar Graphs [PDF]
We present space-efficient algorithms for computing cut vertices in a given graph with $n$ vertices and $m$ edges in linear time using $O(n+\min\{m,n\log \log n\})$ bits.
Kammer, Frank +2 more
core +2 more sources
The Degree-Diameter Problem for Outerplanar Graphs
For positive integers Δ and D we define nΔ,D to be the largest number of vertices in an outerplanar graph of given maximum degree Δ and diameter D. We prove that nΔ,D=ΔD2+O (ΔD2−1)$n_{\Delta ,D} = \Delta ^{{D \over 2}} + O\left( {\Delta ^{{D \over 2 ...
Dankelmann Peter +2 more
doaj +1 more source
Total domination in maximal outerplanar graphs II
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Dorfling, Michael +2 more
openaire +1 more source
A Note on Edge‐Group Choosability of Planar Graphs without 5‐Cycles
This paper is devoted to a study of the concept of edge‐group choosability of graphs. We say that G is edge‐k‐group choosable if its line graph is k‐group choosable. In this paper, we study an edge‐group choosability version of Vizing conjecture for planar graphs without 5‐cycles and for planar graphs without noninduced 5‐cycles (2010 Mathematics ...
Amir Khamseh, Andrei V. Kelarev
wiley +1 more source
On Separating Path and Tree Systems in Graphs [PDF]
We explore the concept of separating systems of vertex sets of graphs. A separating system of a set $X$ is a collection of subsets of $X$ such that for any pair of distinct elements in $X$, there exists a set in the separating system that contains ...
Ahmad Biniaz +8 more
doaj +1 more source
Nonplanarity of Iterated Line Graphs
The 1‐crossing index of a graph G is the smallest integer k such that the kth iterated line graph of G has crossing number greater than 1. In this paper, we show that the 1‐crossing index of a graph is either infinite or it is at most 5. Moreover, we give a full characterization of all graphs with respect to their 1‐crossing index.
Jing Wang, Alfred Peris
wiley +1 more source
Game Chromatic Number of Generalized Petersen Graphs and Jahangir Graphs
Let G = (V, E) be a graph, and two players Alice and Bob alternate turns coloring the vertices of the graph G a proper coloring where no two adjacent vertices are signed with the same color. Alice′s goal is to color the set of vertices using the minimum number of colors, which is called game chromatic number and is denoted by χg(G), while Bob′s goal is
Ramy Shaheen +3 more
wiley +1 more source
Vertex Colorings without Rainbow Subgraphs
Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if its vertices receive distinct colors. For a graph F, we define the F-upper chromatic number of G as the maximum number of colors that can be used to color the vertices of G ...
Goddard Wayne, Xu Honghai
doaj +1 more source
A simple linear time algorithm for the locally connected spanning tree problem on maximal planar chordal graphs [PDF]
A locally connected spanning tree (LCST) T of a graph G is a spanning tree of G such that, for each node, its neighborhood in T induces a connected sub- graph in G.
CALAMONERI, Tiziana +2 more
core +1 more source

