Results 21 to 30 of about 211,213 (315)
Nonlinear boundary value problems involving the extrinsic mean curvature operator [PDF]
Summary: The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type \[ \nabla \cdot \bigg (\frac {\nabla v}{\sqrt {1 - | \nabla v| ^2}}\bigg) = f(| x| ,v) \quad \text{in} \;B_R,\quad u = 0 \quad \text{on} \;\partial B_R , \] where \(B_R\) is the open ball of center \(0\) and radius
Jean Mawhin
openalex +2 more sources
Scalar and mean curvature comparison via the Dirac operator
We use the Dirac operator technique to establish sharp distance estimates for compact spin manifolds under lower bounds on the scalar curvature in the interior and on the mean curvature of the boundary. In the situations we consider, we thereby give refined answers to questions on metric inequalities recently proposed by Gromov.
S. Cecchini, Rudolf Zeidler
openalex +4 more sources
Second Eigenvalue of Paneitz Operators and Mean Curvature [PDF]
For $n\geq 7$, we give the optimal estimate for the second eigenvalue of Paneitz operators for compact $n$-dimensional submanifolds in an $(n+p)$-dimensional space form.
Daguang Chen, Haizhong Li
openalex +5 more sources
A note on parallel mean curvature surfaces and Codazzi operators [PDF]
We present an intrinsic Klotz-Osserman type theorem for surfaces in terms of Codazzi operators. Additionally, utilizing Simons' formula, we investigate surfaces with parallel mean curvature with non-positive Gaussian curvature in product spaces.
Felippe Guimarães
openalex +4 more sources
Positive radial solutions for systems with mean curvature operator in Minkowski space
We are concerned with a Dirichlet system, involving the mean curvature operator in Minkowski space M(w) = div (∇w / 1−|∇w|2) in a ball in RN. Using topological degree arguments, critical point theory and lower and upper solutions method, we obtain non existence, existence and multiplicity of radial, positive solutions.
Daniela Gurban, Petru Jebelean
semanticscholar +5 more sources
Problems with mean curvature-like operators and three-point boundary conditions [PDF]
14 pages.
Dionicio Pastor Dallos Santos
openalex +5 more sources
We investigate the existence, uniqueness and multiplicity of one-signed rotationally symmetric solutions of singular Dirichlet problems with the prescribed higher mean curvature operator in Minkowski spacetime. The main tools are the Schauder fixed point
Meiyu Liu, Minghe Pei, Libo Wang
openalex +3 more sources
Saddle solutions for Allen-Cahn type equations involving the prescribed mean curvature operator [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Renan J. S. Isneri
openalex +3 more sources
Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space
We deal with a multiparameter Dirichlet system having the form \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} -\mathcal M(u) = \lambda_1f_1(u,v), & \hbox{in $\Omega$},\\ -\mathcal M(v) = \lambda_2f_2(u,v), & \hbox{in $\Omega$},\\ u|_ ...
Daniela Gurban +2 more
openalex +2 more sources
On the 𝐿ᵣ-operators penalized by (𝑟+1)-mean curvature [PDF]
In this paper, we establish the non-positivity of the second eigenvalue of the Schrödinger operator − div ( P r ∇ ⋅ ) − W r 2 -\textrm ...
Leo Souza
openalex +2 more sources

