Results 241 to 250 of about 165,835 (261)

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

Multi‐Faceted Binder Enhancement via Slurry‐Applicable Thiol‐Ene Click Chemistry for Low‐Pressure‐Operable All‐Solid‐State Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Cross‐linked binders with enhanced resiliencies under low operating pressures are designed via in situ thiol‐ene click reactions within slurries. Cross‐linking improves the Young's moduli and elasticities of the styrene‐butadiene rubber binders, effectively mitigating interparticle delamination within the composite cathodes induced by volumetric ...
Young Joon Park   +9 more
wiley   +1 more source

High‐Spatiotemporal‐Resolution Transparent Thermoelectric Temperature Sensor Arrays Reveal Temperature‐Dependent Windows for Reversible Photothermal Neuromodulation

open access: yesAdvanced Functional Materials, EarlyView.
Thermoelectric temperature sensors are developed that directly measure heat changes during optical‐based neural stimulation with millisecond precision. The sensors reveal the temperature windows for safe reversible neural modulation: 1.4–4.5 °C enables reversible neural inhibition, while temperatures above 6.1 °C cause permanent thermal damage.
Junhee Lee   +9 more
wiley   +1 more source

Exploiting Two‐Photon Lithography, Deposition, and Processing to Realize Complex 3D Magnetic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey   +5 more
wiley   +1 more source

Stabilizing Cationic Palladium Single‐Atom Sites on Heteroatom‐Doped Carbon for Selective Hydrogen Peroxide Electrosynthesis

open access: yesAdvanced Functional Materials, EarlyView.
In this research, it is demonstrated that dual nitrogen and sulfur doping in hollow carbon spheres creates a tunable coordination environment that stabilizes cationic Pd single atoms as robust organometallic complexes, enabling high selectivity and stability for electrochemical hydrogen peroxide production under harsh acidic and peroxide‐rich ...
Guilherme V. Fortunato   +16 more
wiley   +1 more source
Some of the next articles are maybe not open access.

Related searches:

Double curvature membrane lens

Applied Optics, 2020
The paper presents a theoretical analysis of properties of a specific liquid membrane lens composed of two axially symmetric membranes of different thicknesses and double curvature. These membranes enclose a space where an optical liquid is filled. Mechanical and optical properties of the lens are then changed by varying the volume of the liquid.
Antonín Mikš, Petr Pokorný
openaire   +2 more sources

Epsin: Inducing membrane curvature

The International Journal of Biochemistry & Cell Biology, 2007
Epsin was originally discovered by virtue of its binding to another accessory protein, Eps15. Members of the epsin family play an important role as accessory proteins in clathrin-mediated endocytosis. Epsin isoforms have been described that differ in intracellular site of action and/or in tissue distribution, although all epsins essentially contribute ...
Horvath, Caroline A.J.   +4 more
openaire   +3 more sources

Generation of nanoscopic membrane curvature for membrane trafficking

Nature Reviews Molecular Cell Biology, 2022
Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and ...
Michael M. Kozlov, Justin W. Taraska
openaire   +2 more sources

Home - About - Disclaimer - Privacy