Results 201 to 210 of about 75,500 (332)

Long‐Term Effects of Xenotransplantation of Human Enteric Glia in an Immunocompetent Rat Model of Acute Brain Injury

open access: yesAdvanced Science, EarlyView.
Acute brain injuries are characterized by extensive tissue damage, resulting in debilitating deficits in patients. Despite considerable progress, cell‐based approaches have yet to identify an ideal candidate. This long‐term study explores the use of an untested cell source – human enteric glia – and a non‐invasive administration route – intranasal ...
Nina Colitti   +11 more
wiley   +1 more source

ToMAS: Torus-based secure multi-factor biometric authentication system. [PDF]

open access: yesComput Struct Biotechnol J
Hong MY, Lee KH, Jung JH, Yoon JW.
europepmc   +1 more source

Delta Opioid Receptors within the Cortico‐Thalamic Circuitry Underlie Hyperactivity Induced by High‐Dose Morphine

open access: yesAdvanced Science, EarlyView.
Morphine activates the excitatory cingulate cortex–intermediate rostrocaudal division of zona incerta (Cg‐ZIm) pathway to drive hyperlocomotion in mice. Inhibiting the Cg‐ZIm pathway attenuates both acute and chronic morphine‐induced hyperlocomotion, while its activation mimics morphine's motor effects.
Chun‐Yue Li   +13 more
wiley   +1 more source

Digital Legal Seal for Message Authentication Code

open access: diamond, 2016
Changhun Jung   +5 more
openalex   +2 more sources

Midbrain PAG Astrocytes Modulate Mouse Defensive and Panic‐Like Behaviors

open access: yesAdvanced Science, EarlyView.
Astrocytes in the midbrain periaqueductal gray (PAG) dynamically encode threat intensity and shape defensive action selection in mice. Real‐time Ca2+ imaging reveals robust astrocytic activation during predator odor and CO2 exposure. Aberrant astrocytic Ca2+ overactivation disrupts goal‐directed escape, biases behavior toward freezing, and induces ...
Ellane Barcelon   +10 more
wiley   +1 more source

Modifying Glucose Metabolism Reverses Memory Defects of Alzheimer's Disease Model at Late Stages

open access: yesAdvanced Science, EarlyView.
Using spatial transcriptomics, we show that ferul enanthate (SL‐ZF‐01) reverses episodic‐like memory deficits in aged, but not young, Alzheimer’s disease (AD) mice. SL restores glucose metabolism and Glucose Transporter 1/3 expression via an ‘Aging‐AD‐Rescue’ pattern, rescuing deficits seen in aged AD mice.
Fang Liu   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy