Results 161 to 170 of about 860,607 (312)

Comparison of the initial metabolic pathway of p,p'-DDT in carp and tilapia.

open access: bronze, 1988
Naoyuki Uchida   +5 more
openalex   +2 more sources

Calcium‐sensing receptor induces the apoptosis of chondrocytes in cooperation with phosphate transporter

open access: yesFEBS Open Bio, EarlyView.
Excess Ca2+ ions activate the Calcium‐Sensing Receptor (CaSR), which subsequently drives the uptake of excess inorganic phosphate (Pi) via the Pi transporter (Pit−1) in chondrocytes. This mechanism causes a toxic increase in intracellular Pi concentration, ultimately leading to chondrocyte apoptosis and pathological mineralization. Excess extracellular
Sachie Nakatani   +7 more
wiley   +1 more source

Qing-Chang-Hua-Shi granule ameliorates experimental colitis by modulating Lactobacillus gasseri-mediated ferroptosis metabolic pathway. [PDF]

open access: yesChin Med
Cheng C   +15 more
europepmc   +1 more source

The photoswitchable cannabinoid azo‐HU308 enables optical control of Ca2+ dynamics in INS‐1 β‐cells via off‐target effects on TRPC channels

open access: yesFEBS Open Bio, EarlyView.
Light activation of the photoswitchable cannabinoid ligand azo‐HU308 triggers Ca2+ influx in pancreatic β‐cells through TRPC channels, independent of CB2 cannabinoid receptors. This reveals a non‐GPCR pathway for cannabinoid modulation of β‐cell Ca2+ dynamics and establishes azo‐HU308 as an optical tool to study cannabinoid signaling through TRP ...
Alexander E. G. Viray, James A. Frank
wiley   +1 more source

Establishment of a coculture system for Porphyromonas gingivalis and head and neck squamous cell carcinoma using spheroid culture and LATS inhibition

open access: yesFEBS Open Bio, EarlyView.
We established a spheroid coculture system enabling viable Porphyromonas gingivalis–HNSCC interactions under normoxic conditions. Inhibition of LATS1/2 maintains tumor cells in an undifferentiated state, which may promote spheroid growth and create a more permissive environment for bacterial persistence.
Yurika Nakajima   +4 more
wiley   +1 more source

DDX3X induces mesenchymal transition of endothelial cells by disrupting BMPR2 signaling

open access: yesFEBS Open Bio, EarlyView.
Elevated DDX3X expression led to downregulation of BMPR2, a key regulator of endothelial homeostasis and function. Our co‐immunoprecipitation assays further demonstrated a molecular interaction between DDX3X and BMPR2. Notably, DDX3X promoted lysosomal degradation of BMPR2, thereby impairing its downstream signaling and facilitating endothelial‐to ...
Yu Zhang   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy