Results 161 to 170 of about 587,928 (308)

Two Novel S‐methyltransferases Confer Dimethylsulfide Production in Actinomycetota

open access: yesAdvanced Science, EarlyView.
This study identifies two novel S‐adenosine‐methionine‐dependent methyltransferases, MddM1 and MddM2, in actinomycetes from the Mariana Trench. These enzymes can convert toxic hydrogen sulfide (H2S) and methanethiol (MeSH) into dimethylsulfide (DMS), serving as a cellular detoxification and oxidative stress response.
Ruihong Guo   +11 more
wiley   +1 more source

Balanced Expression of the Diiron Oxygenase BioE Is Essential for Biotin Homeostasis in Elizabethkingia meningoseptica

open access: yesAdvanced Science, EarlyView.
BioE is a new diiron oxygenase that catalyzes the conversion of long‐chain acyl groups into pimeloyl thioester, initiating biotin synthesis. The overexpression of EmBioE disrupts lipid metabolic homeostasis, requiring repressor BioL to maintain a balance between long‐chain fatty acids and biotin synthesis.
Meng Zhang   +9 more
wiley   +1 more source

Microenvironment Self‐Adaptive Nanoarmor to Address Adhesion‐ and Colonization‐Related Obstacles in Impaired Intestine Promote Bacteriotherapy Against Parkinson's Disease

open access: yesAdvanced Science, EarlyView.
A microenvironment self‐adaptive nanoarmor is developed to effectively address the adhesion‐ and colonization‐related challenges posed by multiple physiological and pathological characteristics in the intestine. L. plantarum@MPN@CS showed significant therapeutic potential in treating Parkinson's disease (PD), a model for extraintestinal disorders, as ...
Limeng Zhu   +6 more
wiley   +1 more source

A Mussel‐Inspired Bioadhesive Patch to Selectively Kill Glioblastoma Cells

open access: yesAdvanced Science, EarlyView.
An innovative mussel‐inspired bioadhesive patch has been developed for post‐surgical glioblastoma treatment. The patch, which adheres strongly in biological environments, releases a localized treatment. This treatment, acting via reactive oxygen species, shows specific toxicity to glioblastoma cells.
Jose Bolaños‐Cardet   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy