Results 171 to 180 of about 941,236 (333)

Bimetallic Nanoreactor Activates cGAS‐STING Pathway via mtDNA Release for Cancer Metalloimmunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
A bimetallic Mn–Ca nanoreactor (MCC) is developed as a non‐nucleotide STING nanoagonist for cancer metalloimmunotherapy. MCC induces Ca2+ overload and hydroxyl radical generation, resulting in mitochondrial damage and mtDNA release. The released mtDNA cooperates with Mn2+ to robustly activate cGAS–STING signaling.
Xin Wang Mo   +7 more
wiley   +1 more source

A Single‐Metal‐Doped Nanoplatform for Ferroptosis‐Driven cGAS‐STING Pathway Activation in Hepatocellular Carcinoma Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
The cGAS‐STING pathway boosts HCC antitumor immunity but lacks specific activation. Nanoplatform ZMRPF induces HCC ferroptosis via lipid ROS, releasing mtDNA. It synergizes with ZMRPF‐released Mn2⁺ to activate cGAS‐STING, amplifies antigen‐presenting cell activity, reverses HCC immunosuppression, and enables robust systemic antitumor immunity ...
Yuchen Zhang   +13 more
wiley   +1 more source

Synthetic Nanobiology Actuated Lipometabolic Cell Factory for Autologous Tumor Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
FA plays a crucial role in the interaction between tumor cells and the tumor microenvironment, especially for the immune response. A biocatalytic immunoenhancement strategy is developed to boost antitumor immunity by FA metabolic orientation to ceramide. Through the design of this delicate catalytic immunoenhancement strategy, the synthetic nanobiology
Shoujie Zhao   +8 more
wiley   +1 more source

Revelation and characterization of mitochondrial plasmid-like DNA of cotton [PDF]

open access: diamond, 1992
T. Yu. Yusupov   +3 more
openalex   +1 more source

Engineering a Sonotherapeutic RBC Membrane‐Derived Nanoparticle Platform for the Treatment of Liver Cancer

open access: yesAdvanced Functional Materials, EarlyView.
Herein, an RBC membrane‐derived nanoparticle (CMN‐ICG) is engineered to efficiently deliver a sonosensitizing agent, indocyanine green (ICG), for sonotherapy of hepatocellular carcinoma (HCC). CMN‐ICG exhibits excellent cytocompatibility, significantly enhances hepatocyte uptake, and produces excessive reactive oxygen species (ROS) upon ultrasound ...
Alap Ali Zahid   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy