Results 181 to 190 of about 920,301 (294)

Bimetallic Nanoreactor Activates cGAS‐STING Pathway via mtDNA Release for Cancer Metalloimmunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
A bimetallic Mn–Ca nanoreactor (MCC) is developed as a non‐nucleotide STING nanoagonist for cancer metalloimmunotherapy. MCC induces Ca2+ overload and hydroxyl radical generation, resulting in mitochondrial damage and mtDNA release. The released mtDNA cooperates with Mn2+ to robustly activate cGAS–STING signaling.
Xin Wang Mo   +7 more
wiley   +1 more source

A Single‐Metal‐Doped Nanoplatform for Ferroptosis‐Driven cGAS‐STING Pathway Activation in Hepatocellular Carcinoma Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
The cGAS‐STING pathway boosts HCC antitumor immunity but lacks specific activation. Nanoplatform ZMRPF induces HCC ferroptosis via lipid ROS, releasing mtDNA. It synergizes with ZMRPF‐released Mn2⁺ to activate cGAS‐STING, amplifies antigen‐presenting cell activity, reverses HCC immunosuppression, and enables robust systemic antitumor immunity ...
Yuchen Zhang   +13 more
wiley   +1 more source

Mitochondrial DNA Dysfunction in Cardiovascular Diseases: A Novel Therapeutic Target. [PDF]

open access: yesAntioxidants (Basel)
Xiang M   +6 more
europepmc   +1 more source

Novel Bioconjugate Materials: Synthesis, Characterization and Medical Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
This review discusses the bioconjugation of novel materials grouped under “biological”, “hybrid” and “synthetic” categories. Medical applications ranging from cancer therapy and diagnostics to optogenetics and tissue engineering are explored, and conjugation trends are highlighted as a general guide. The review concludes with a comparison of techniques
Ellie Martin   +6 more
wiley   +1 more source

Author Correction: Ribonucleotide incorporation into mitochondrial DNA drives inflammation. [PDF]

open access: yesNature
Bahat A   +21 more
europepmc   +1 more source

Membrane Fusion‐Inspired Nanomaterials: Emerging Strategies for Infectious Disease and Cancer Diagnostics

open access: yesAdvanced Healthcare Materials, EarlyView.
Membrane fusion‐inspired nanomaterials offer transformative potential in diagnostics by mimicking natural fusion processes to achieve highly sensitive and specific detection of disease biomarkers. This review highlights recent advancements in nanomaterial functionalization strategies, signal amplification systems, and stimuli‐responsive fusion designs,
Sojeong Lee   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy