Results 101 to 110 of about 14,384,780 (329)
Molecular sieves [PDF]
Endeavour, 1964 AbstractThe zeolites form a numerous group of structurally diverse, porous, crystalline aluminosilicates. The naturally‐occurring zeolites arise by hydrothermal action of solutions in basaltic rocks and also as large sedimentary deposits. The naturally‐occurring species have been augmented by a number of synthetic zeolites without any known natural ...openaire +1 more sourceMolecular angiogenesis
Chemistry & Biology, 1999 New insights into the mechanisms by which blood vessels develop (angiogenesis) have been gained recently, primarily by the identification of factors that inhibit and promote this process. Angiogenesis-stimulating factors are being used to promote growth of new blood vessels in ischemic disease.Klagsbrun, Michael, Moses, Marsha A.openaire +2 more sourcesThe role and implications of mammalian cellular circadian entrainment
FEBS Letters, EarlyView.At their most fundamental level, mammalian circadian rhythms occur inside every individual cell. To tell the correct time, cells must align (or ‘entrain’) their circadian rhythm to the external environment. In this review, we highlight how cells entrain to the major circadian cues of light, feeding and temperature, and the implications this has for our Priya Crosbywiley +1 more sourceMolecular bases of circadian magnesium rhythms across eukaryotes
FEBS Letters, EarlyView.Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...Helen K. Feord, Gerben van Ooijenwiley +1 more sourceComprehensive molecular characterization of gastric adenocarcinoma
Nature, 2014 Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity.A. Bass, V. Thorsson, I. Shmulevich, Sheila M. Reynolds, Michael Miller, Brady Bernard, T. Hinoue, P. Laird, C. Curtis, Hui Shen, D. Weisenberger, N. Schultz, R. Shen, Nils Weinhold, D. Kelsen, R. Bowlby, Andy Chu, K. Kasaian, A. Mungall, A. G. Robertson, Payal Sipahimalani, A. Cherniack, G. Getz, Yingchun Liu, M. Noble, C. Pedamallu, C. Sougnez, A. Taylor-Weiner, Rehan Akbani, Ju-Seog Lee, Wenbin Liu, G. Mills, Da Yang, Wei Zhang, A. Pantazi, Michael G Parfenov, M. Gulley, M. Piazuelo, B. Schneider, Jihun Kim, A. Boussioutas, Margi Sheth, John A. Demchok, C. Rabkin, J. Willis, S. Ng, Katherine S. Garman, D. Beer, A. Pennathur, Benjamin J. Raphael, Hsin-Ta Wu, R. Odze, H. Kim, Jay Bowen, K. Leraas, T. Lichtenberg, Stephanie Weaver, M. McLellan, M. Wiznerowicz, R. Sakai, M. Lawrence, K. Cibulskis, Lee T Lichtenstein, Sheila A Fisher, S. Gabriel, E. Lander, L. Ding, Beifang Niu, Adrian Ally, Miruna Balasundaram, I. Birol, Denise Brooks, Y. Butterfield, R. Carlsen, Justin Chu, E. Chuah, Hye-Jung E. Chun, A. Clarke, Noreen Dhalla, R. Guin, R. Holt, Steven J. M. Jones, Darlene Lee, Haiyan Li, E. Lim, Yussanne Ma, M. Marra, Michael Mayo, Richard A. Moore, K. Mungall, K. Nip, J. Schein, Angela Tam, N. Thiessen, R. Beroukhim, S. Carter, A. Cherniack, Juok Cho, D. Dicara, S. Frazer, Nils Gehlenborg, David I Heiman, Joonil Jung, Jaegil Kim, Pei Lin, M. Meyerson, A. Ojesina, C. Pedamallu, G. Saksena, S. Schumacher, P. Stojanov, B. Tabak, Douglas Voet, Mara W Rosenberg, Travis Zack, Hailei Zhang, L. Zou, A. Protopopov, Netty G Santoso, Semin Lee, Jianhua Zhang, Harshad S. Mahadeshwar, Jiabin Tang, X. Ren, S. Seth, Lixing Yang, A. W. Xu, Xingzhi Song, Ruibin Xi, C. Bristow, Angela Hadjipanayis, J. Seidman, L. Chin, P. Park, R. Kucherlapati, Shiyun Ling, A. Rao, J. Weinstein, Sang-Bae Kim, Ju-Seog Lee, Yiling Lu, G. Mills, Moiz Bootwalla, Phillip H. Lai, T. Triche, D. J. Van Den Berg, S. Baylin, J. Herman, Bradley A. Murray, B. A. Askoy, G. Ciriello, Gideon Dresdner, Jianjiong Gao, Benjamin E. Gross, A. Jacobsen, William Lee, Ricardo Ramirez, C. Sander, Y. Şenbabaoğlu, Rileen Sinha, S. O. Sumer, Yichao Sun, V. Thorsson, L. Iype, R. Kramer, R. Kreisberg, Hector Rovira, Natalie I. Tasman, S. C. Ng, D. Haussler, Josh M Stuart, R. Verhaak, Mark D. M. Leiserson, B. Taylor, Aaron D. Black, Julie Carney, J. Gastier-Foster, Carmen Helsel, Cynthia McAllister, N. Ramirez, Teresa R. Tabler, L. Wise, E. Zmuda, R. Penny, D. Crain, J. Gardner, Kevin R Lau, Erin Curely, D. Mallery, S. Morris, J. Paulauskis, T. Shelton, C. Shelton, M. Sherman, C. Benz, Jaehyuk Lee, K. Fedosenko, G. Manikhas, O. Potapova, Olga Voronina, S. Belyaev, Oleg Dolzhansky, W. Rathmell, Jakub Brzeziński, Matthew Ibbs, Konstanty Korski, W. Kycler, Radoslaw ŁaŸniak, E. Leporowska, A. Mackiewicz, D. Murawa, P. Murawa, A. Spychała, W. Suchorska, Honorata Tatka, M. Teresiak, R. Abdel-Misih, Joseph Bennett, Jennifer Brown, M. Iacocca, B. Rabeno, S. Kwon, A. Kemkes, Erin E. Curley, I. Alexopoulou, J. Engel, J. Bartlett, Monique Albert, D. Park, R. Dhir, J. Luketich, R. Landreneau, Y. Janjigian, E. Cho, M. Ladanyi, Laura H. Tang, S. McCall, Y. S. Park, J. Cheong, J. Ajani, M. C. Camargo, S. Alonso, B. Ayala, M. Jensen, T. Pihl, R. Raman, Jessica L Walton, Yunhu Wan, G. Eley, K. R. Mills Shaw, R. Tarnuzzer, Zhining Wang, Liming Yang, J. Zenklusen, Tanja Davidsen, C. Hutter, H. Sofia, R. Burton, Sudha Chudamani, Jia Liu +259 moresemanticscholar +1 more sourceCrosstalk between the ribosome quality control‐associated E3 ubiquitin ligases LTN1 and RNF10
FEBS Letters, EarlyView.Loss of the E3 ligase LTN1, the ubiquitin‐like modifier UFM1, or the deubiquitinating enzyme UFSP2 disrupts endoplasmic reticulum–ribosome quality control (ER‐RQC), a pathway that removes stalled ribosomes and faulty proteins. This disruption may trigger a compensatory response to ER‐RQC defects, including increased expression of the E3 ligase RNF10 ...Yuxi Huang, Satoshi Hashimoto, Sota Ito, Chisato Kikuguchi, Miho Hoshi, Kiyoshi Yamaguchi, Yoichi Furukawa, Toru Suzuki, Toshifumi Inada +8 morewiley +1 more sourceAb-Initio Molecular Dynamics
, 2013 Computer simulation methods, such as Monte Carlo or Molecular Dynamics, are
very powerful computational techniques that provide detailed and essentially
exact information on classical many-body problems.Alavi, Alder, Almlöf, Alonso, Andrade, Arias, Baroni, Bendt, Benoit, Berendsen, Berne, Binder, Binder, Blöchl, Blöchl, Blöchl, Born, Bornemann, Briggs, Camellone, Car, Caravati, Caravati, Caravati, Caravati, Caravati, Caravati, Ceperley, Ceperley, Ceriotti, Ceriotti, Chandler, Cucinotta, Dai, Dreizler, Ehrenfest, Engel, Ferguson, Fermi, Feynman, Feynman, Foulkes, Frenkel, Galli, Gan, Gilbert, Gillan, Goedecker, Goedecker, Guidon, Guidon, Guidon, Habershon, Harriman, Harris, Hartree, Hassanali, Hellmann, Herbert, Hohenberg, Hutter, Iannuzzi, Jones, Kalos, Khaliullin, Khaliullin, Koch, Kohanoff, Kohn, Kohn, Kolafa, Kolafa, Krack, Krack, Krack, Krajewski, Kresse, Kresse, Kresse, Kühne, Kühne, Kühne, Kühne, Laasonen, Landau, Levy, Lieb, Lippert, Lippert, Liu, Los, Los, Luduena, Luduena, Martin, Martyna, Marx, Marx, Marzari, McWeeny, Mermin, Metropolis, Modine, Morrone, Mostofi, Niklasson, Niklasson, Palser, Parr, Parrinello, Pascal, Pastore, Payne, Perdew, Pulay, Putrino, Rahman, Rapacioli, Rapaport, Ricci, Richters, Röhrig, Scheffler, Schlegel, Schmid, Selloni, Sharma, Smargiassi, Tangney, Tangney, Thomas, Thomas, Todorova, Tuckerman, Tuckerman, Tymczak, VandeVondele, VandeVondele, VandeVondele, Yang, Zhang +140 morecore +1 more source