Results 51 to 60 of about 4,701,977 (282)
Commutators on Weighted Morrey Spaces on Spaces of Homogeneous Type
In this paper, we study the boundedness and compactness of the commutator of Calderón– Zygmund operators T on spaces of homogeneous type (X, d, µ) in the sense of Coifman and Weiss.
Gong Ruming +3 more
doaj +1 more source
We prove the boundedness of global classical solutions for the semilinear heat equation $u_t-\Delta u= |u|^{p-1}u$ in the whole space $R^n$, with $n\ge 3$ and supercritical power $p>(n+2)/(n-2)$.
Adams +48 more
core +2 more sources
The three‐dimensional Seiberg–Witten equations for 3/2$3/2$‐spinors: A compactness theorem
Abstract The Rarita‐Schwinger–Seiberg‐Witten (RS–SW) equations are defined similarly to the classical Seiberg–Witten equations, where a geometric non–Dirac‐type operator replaces the Dirac operator called the Rarita–Schwinger operator. In dimension 4, the RS–SW equation was first considered by the second author (Nguyen [J. Geom. Anal. 33(2023), no. 10,
Ahmad Reza Haj Saeedi Sadegh +1 more
wiley +1 more source
We prove weighted boundedness of Calderón–Zygmund and maximal singular operators in generalized Morrey spaces on quasi-metric measure spaces, in general non-homogeneous, only under the growth condition on the measure, for a certain class of weights ...
N. Samko
semanticscholar +1 more source
A note on the magnetic Steklov operator on functions
Abstract We consider the magnetic Steklov eigenvalue problem on compact Riemannian manifolds with boundary for generic magnetic potentials and establish various results concerning the spectrum. We provide equivalent characterizations of magnetic Steklov operators which are unitarily equivalent to the classical Steklov operator and study bounds for the ...
Tirumala Chakradhar +3 more
wiley +1 more source
Riesz potential on the Heisenberg group and modified Morrey spaces
In this paper we study the fractional maximal operator Mα, 0 ≤ α < Q and the Riesz potential operator ℑα, 0 < α < Q on the Heisenberg group in the modified Morrey spaces L͂p,λ(ℍn), where Q = 2n + 2 is the homogeneous dimension on ℍn.
Guliyev Vagif S., Mammadov Yagub Y.
doaj +1 more source
New pre-dual space of Morrey space [PDF]
In this paper we give new characterization of the classical Morrey space. Complementary global Morrey-type spaces are introduced. It is proved that for particular values of parameters these spaces give new pre-dual space of the classical Morrey space. We
Gogatishvili, A. +2 more
core
ABSTRACT This qualitative study explores therapists' experiences of the therapeutic relationship when therapy is conducted in natural public spaces, such as parks, footpaths and community gardens. Drawing on therapists' experiences of working outdoors with their clients, the aim was to capture and understand how the therapeutic relationship is impacted
Elaine Moore, Faisal Mahmood
wiley +1 more source
Dual spaces of local Morrey-type spaces [PDF]
Let \(\omega \) be a weight function on \((0,\infty )\). The local Morrey-type spaces \(LM_{p,\theta ,\omega }\) with the norm \(\| \omega (r)\| f\| _{L_p(B(0,r))}\| _{L_{\theta }(0,\infty )}\) are considered.
Gogatishvili, Amiran, Mustafayev, Rza
openaire +4 more sources
First‐order Sobolev spaces, self‐similar energies and energy measures on the Sierpiński carpet
Abstract For any p∈(1,∞)$p \in (1,\infty)$, we construct p$p$‐energies and the corresponding p$p$‐energy measures on the Sierpiński carpet. A salient feature of our Sobolev space is the self‐similarity of energy. An important motivation for the construction of self‐similar energy and energy measures is to determine whether or not the Ahlfors regular ...
Mathav Murugan, Ryosuke Shimizu
wiley +1 more source

