Results 41 to 50 of about 4,920,301 (252)
COMPARISON OF MORREY SPACES AND NIKOL’SKII SPACES
We consider two popular function spaces: the Morrey spaces and the Nikol'skii spaces and investigate the relationship between them in the one-dimensional case. In particular, we prove that, under the appropriate assumptions on the numerical parameters, their restrictions to the class of functions f of the form f (x) = g(|x|), where g is a non-negative ...
Burenkov V.I.+2 more
openaire +2 more sources
In this paper, we shall give a characterization for the strong and weak type Spanne type boundedness of the fractional integral operator Iα , 0 < α < Q on Carnot group G on generalized weighted Morrey spaces Mp,φ (G,w) , respectively, where Q is the ...
V. Guliyev, I. Ekincioğlu
semanticscholar +1 more source
We discuss the boundedness of linear and sublinear operators in two types of weighted local Morrey spaces. One is defined by Natasha Samko in 2008. The other is defined by Yasuo Komori-Furuya and Satoru Shirai in 2009. We characterize the class of weights for which the Hardy-Littlewood maximal operator is bounded.
Nakamura S., Sawano Y., Tanaka H.
openaire +3 more sources
For any function f f belonging to Q p , λ Q^{p,\lambda } , a certain proper subspace of the classical Morrey space L p , λ L^{p, \lambda } , a sharp capacity weak-type estimate is obtained for its Riesz
openaire +2 more sources
Nuclear embeddings of Morrey sequence spaces and smoothness Morrey spaces
We study nuclear embeddings for spaces of Morrey type, both in its sequence space version and as smoothness spaces of functions defined on a bounded domain $Ω\subset {\mathbb R}^d$. This covers, in particular, the meanwhile well-known and completely answered situation for spaces of Besov and Triebel-Lizorkin type defined on bounded domains which has ...
Haroske, Dorothee D., Skrzypczak, Leszek
openaire +2 more sources
Regularity and separation for Grušin‐type p‐Laplace operators
Abstract We analyze p‐Laplace type operators with degenerate elliptic coefficients. This investigation includes Grušin‐type p‐Laplace operators. We describe a separation phenomenon in elliptic and parabolic p‐Laplace type equations, which provide an illuminating illustration of simple jump discontinuities of the corresponding weak solutions ...
Daniel Hauer, Adam Sikora
wiley +1 more source
New pre-dual space of Morrey space [PDF]
In this paper we give new characterization of the classical Morrey space. Complementary global Morrey-type spaces are introduced. It is proved that for particular values of parameters these spaces give new pre-dual space of the classical Morrey space. We also show that our new pre-dual space of the Morrey space coincides with known pre-dual spaces.
Gogatishvili, Amiran+2 more
openaire +5 more sources
Generalized Von Neumann-Jordan Constant for Morrey Spaces and Small Morrey Spaces [PDF]
In this paper we calculate some geometric constants for Morrey spaces and small Morrey spaces, namely generalized Von Neumann-Jordan constant, modified Von Neumann-Jordan constants, and Zb\'{a}ganu constant. All these constants measure the uniformly nonsquareness of the spaces. We obtain that their values are the same as the value of Von Neumann-Jordan
arxiv
Proper inclusions of Morrey spaces
8 ...
Mochammad Idris+2 more
openaire +3 more sources
On the continuity of solutions to anisotropic elliptic operators in the limiting case
Abstract We show that local weak solutions to anisotropic elliptic equations with bounded and measurable coefficients, whose prototype is −∑i=1N∂i(|∂iu|pi−2∂iu)=0,with1
Simone Ciani+2 more
wiley +1 more source