Results 151 to 160 of about 202,905 (306)
Schematic overview illustrating the detrimental role of gut microbiota in aspirin‐induced intestinal injury. L. sphaericus and its secreted carboxylesterase EstB are identified as key drivers that catalyze aspirin hydrolysis into salicylic acid, thereby exacerbating intestinal injury. Inhibition of EstB by the dietary compound flavanomarein effectively
Zeyu Zhao +13 more
wiley +1 more source
IR‐induced dysbiosis depletes P. coprophilus and its metabolite 6‐methyluracil, leading to disinhibition of the IDO1‐Kyn‐AHR axis. This results in sustained fibroblast activation and collagen deposition, driving radiation induced intestinal fibrosis. ABSTRACT Therapeutic options for radiation‐induced intestinal fibrosis (RIF) remain limited. This study
Jiaxin Zhang +11 more
wiley +1 more source
Prebiotics and Mucosal Barrier Function [PDF]
openaire +2 more sources
Trojan Horse Strategy: How Biomimetic Nanomedicine Remodels the Tumor Microenvironment
This review focuses on biomimetic nanomedicines for tumor microenvironment (TME) remodeling, covering their diverse biomimetic types, design principles, and mechanisms of immune cell reprogramming and reversal of immunosuppressive microenvironments, with particular emphasis on their application in synergistic immunotherapy.
Wanrong Wang +7 more
wiley +1 more source
Oral nanoCEL exhibits effective intestinal targeting of antigen‐presenting cells and restores the Th17/Treg balance in lymph nodes and spleen, ultimately protecting the blood‐retinal barrier by inhibiting peripheral immune cell infiltration and suppressing retinal glial cell activation.
Jinrun Chen +13 more
wiley +1 more source
ABSTRACT Immune homeostasis is indispensable for preserving organismal integrity, orchestrated through complex molecular networks encompassing immune cell dynamics, microbial cues, and epigenetic regulation. Among these, the gut microbiota‐non‐coding RNA (ncRNA) axis has recently garnered substantial attention as a multifaceted modulator of host ...
Bonan Chen +12 more
wiley +1 more source
Chronic oral exposure to microplastics may disrupt gut microbiota homeostasis and intestinal barrier integrity, potentially engaging the gut–brain axis and systemic inflammatory responses. These alterations may be associated with impaired blood–brain barrier function, cerebral microvascular dysfunction, and enhanced endothelial inflammation, pro ...
Hongxing Wang +5 more
wiley +1 more source

