Results 141 to 150 of about 967,433 (296)

Local atomic structures of hematite nanoparticles studied with XAFS [PDF]

open access: bronze, 1999
Zhonghua Wu   +4 more
openalex   +1 more source

Engineering a Single Amino Acid Bionanozyme for Ultrasensitive Detection of Biomarkers: A WHO‐REASSURE‐ Aligned Approach

open access: yesAdvanced Functional Materials, EarlyView.
A unique 2D bionanozyme, engineered from a single amino acid and copper ions, demonstrates peroxidase‐mimicking catalytic activity. This efficient and simple bionanozyme allows for ultrasensitive, equipment‐free visual detection of key biomarkers in both test and real samples, meeting the WHO‐REASSURE standards for practical diagnostic applications ...
Subrat Vishwakarma   +5 more
wiley   +1 more source

Evolving Platinum‐Copper Nanostructures for Enhanced Photothermal Therapy and Controlled Copper Release in Cancer Therapy

open access: yesAdvanced Functional Materials, EarlyView.
Platinum‐Copper bimetallic nanoparticles may evolve depending on their synthesis under tumor microenvironment conditions and play a dual role as chemotherapeutic agents after releasing Cu ions and as near infrared photothermal agents with the Pt‐rich remaining frames.
Jose I. Garcia‐Peiro   +7 more
wiley   +1 more source

Fabrication and electrical transport characteristics of low-dimensional nanoparticle arrays organized by biomolecular scaffolds

open access: hybrid, 1999
M. N. Wybourne   +4 more
openalex   +1 more source

Lipid-based nanoparticles as drug delivery systems [PDF]

open access: bronze, 1998
P Esposito   +4 more
openalex   +1 more source

Single‐Step Conversion of Metal Impurities in CNTs to Electroactive Metallic Nitride Nanoclusters for Electrochemical CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
A single‐step, low‐temperature co‐pyrolysis process removes encapsulated seed metal NPs (10–50 nm) from CNTs, redistributing them as surface‐anchored metal and metal–nitride NCs (1–1.5 nm). Herein, Ni3N NCs achieve an ultra‐low onset overpotential for CO2 reduction to CO with >98% Faradaic efficiency across 100–700 mA cm−2.
Ahmed Badreldin   +15 more
wiley   +1 more source

Copper Doping Enhances the Activity and Selectivity of Atomically Precise Ag44 Nanoclusters for Photocatalytic CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
By a simple anti‐Galvanic reaction, up to six copper atoms could be preferably doped into the Ag2(SR)5 staple motifs and Ag20 dodecahedral shell of an atomically precise Ag44(SR)30 nanocluster. When anatase TiO2 is used as substrate, the (AgCu)44/TiO2 photocatalyst exhibited much improved activity in photocatalytic CO2 reduction compared to Ag44/TiO2 ...
Ye Liu   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy