Results 211 to 220 of about 448,727 (340)

Synthetic Cell‐Based Tissues for Bottom‐Up Assembly of Artificial Lymphatic Organs

open access: yesAdvanced Healthcare Materials, EarlyView.
Synthetic cells have emerged as a novel biomimetic approach for fundamental research and therapeutic interventions. T cell activating synthetic cells are able to form 3D tissue‐like structures by self‐assembly into lymphatic bottom‐up tissues (lymphBUT) with tunable biochemical and biomechanical functionalities as well as metabolic activity are ...
Anna Burgstaller   +5 more
wiley   +1 more source

Decellularized Extracellular Matrix (dECM) in Tendon Regeneration: A Comprehensive Review

open access: yesAdvanced Healthcare Materials, EarlyView.
Decellularized Extracellular Matrix (dECM) offers a promising solution by replicating the native tendon microenvironment and promoting regeneration. This review highlights advances in the decellularization methods, as well as their integration with emerging technologies and translational progress in tendon tissue engineering.
Kumaresan Sakthiabirami   +4 more
wiley   +1 more source

Fibrillar Bundles as Fibrous Filler Materials for Attaining Cell Anisotropy in Bioprinting

open access: yesAdvanced Healthcare Materials, EarlyView.
Fibrillar bundles are introduced as a bioprintable additive that enables robust and scalable cellular alignment within 3D constructs through flow‐induced orientation during extrusion. These fibers support strong cell adhesion and polarization across various cell types and significantly enhance myotube alignment in Gelatine‐Methacryloyl (GelMA ...
Sven Heilig   +10 more
wiley   +1 more source

Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase–AIF pathway

open access: hybrid, 2014
Kin Pong U   +4 more
openalex   +1 more source

Targeting the ARRDC3–DRP1 Axis via hUMSC‐Derived Exosomal CRYAB for Neuroprotection in Cerebral Ischemia/Reperfusion Injury

open access: yesAdvanced Healthcare Materials, EarlyView.
Intranasally administered hUMSC‐derived exosomes modulate the CRYAB–ARRDC3–Drp1 axis, alleviating mitochondrial dysfunction and ferroptosis, enhancing neuronal survival, reducing oxidative stress, and promoting functional recovery in ischemia‐reperfusion injury, offering a promising therapeutic strategy for ischemic stroke.
Rong ji   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy