Results 301 to 310 of about 203,682 (360)
Some of the next articles are maybe not open access.
The Neuroscientist, 2007
The amino acid L-Glutamate acts as the most ubiquitous mediator of excitatory synaptic transmission in the central nervous system. Glutamatergic transmission is central for diverse brain functions, being particularly important for learning, memory, and cognition. In brain pathology, excessive release of glutamate triggers excitotoxic neural cell death
Verkhratsky, Alexei, Kirchhoff, Frank
openaire +3 more sources
The amino acid L-Glutamate acts as the most ubiquitous mediator of excitatory synaptic transmission in the central nervous system. Glutamatergic transmission is central for diverse brain functions, being particularly important for learning, memory, and cognition. In brain pathology, excessive release of glutamate triggers excitotoxic neural cell death
Verkhratsky, Alexei, Kirchhoff, Frank
openaire +3 more sources
Alcohol, 1990
The actions of glutamate, the major excitatory amino acid in the CNS, are mediated by three receptor subtypes: kainate, quisqualate and N-methyl-D-aspartate (NMDA) receptors. Ethanol, in vitro, is a potent and selective inhibitor of the actions of agonists at the NMDA receptor.
P L, Hoffman +5 more
openaire +2 more sources
The actions of glutamate, the major excitatory amino acid in the CNS, are mediated by three receptor subtypes: kainate, quisqualate and N-methyl-D-aspartate (NMDA) receptors. Ethanol, in vitro, is a potent and selective inhibitor of the actions of agonists at the NMDA receptor.
P L, Hoffman +5 more
openaire +2 more sources
Current Opinion in Neurobiology, 2004
Dynamic modulation of the number of postsynaptic glutamate receptors is considered one of the main mechanisms for altering the strength of excitatory synapses in the central nervous system (CNS). However, until recently N-methyl-d-aspartate (NMDA) receptors were considered relatively stable once in the plasma membrane, especially in comparison with ...
Yi, Nong +2 more
openaire +2 more sources
Dynamic modulation of the number of postsynaptic glutamate receptors is considered one of the main mechanisms for altering the strength of excitatory synapses in the central nervous system (CNS). However, until recently N-methyl-d-aspartate (NMDA) receptors were considered relatively stable once in the plasma membrane, especially in comparison with ...
Yi, Nong +2 more
openaire +2 more sources
Synapse, 1991
AbstractIdentified crayfish visual interneurons respond to illumination with a compound EPSP of up to 40 mV. L‐gultamate, quisqualate, and kainate mimic the depolarizing action of the natural transmitter. In reduced Mg2+, N‐methyl‐D‐aspartate (NMDA) elicits a depolarization with a reversal potential (Erev) = −60 mV. Erev is independent of extracellular
C, Pfeiffer-Linn, R M, Glantz
openaire +2 more sources
AbstractIdentified crayfish visual interneurons respond to illumination with a compound EPSP of up to 40 mV. L‐gultamate, quisqualate, and kainate mimic the depolarizing action of the natural transmitter. In reduced Mg2+, N‐methyl‐D‐aspartate (NMDA) elicits a depolarization with a reversal potential (Erev) = −60 mV. Erev is independent of extracellular
C, Pfeiffer-Linn, R M, Glantz
openaire +2 more sources
NMDA receptors and schizophrenia
Current Opinion in Pharmacology, 2007The pathophysiology of schizophrenia is poorly understood but is likely to involve alterations in excitatory glutamatergic signaling molecules in several areas of the brain. Clinical and experimental evidence has shown that expression of the N-methyl-D-aspartate (NMDA) receptor and intracellular NMDA receptor-interacting proteins of the glutaminergic ...
Lars V, Kristiansen +3 more
openaire +2 more sources
Annual Review of Pharmacology and Toxicology, 2003
The NMDA receptor (NMDAR) plays a central role in the function of excitatory synapses. Recent studies have provided interesting insights into several aspects of the trafficking of this receptor in neurons. The NMDAR is not a static resident of the synapse. Rather, the number and composition of synaptic NMDARs can be modulated by several factors.
Robert J, Wenthold +4 more
openaire +2 more sources
The NMDA receptor (NMDAR) plays a central role in the function of excitatory synapses. Recent studies have provided interesting insights into several aspects of the trafficking of this receptor in neurons. The NMDAR is not a static resident of the synapse. Rather, the number and composition of synaptic NMDARs can be modulated by several factors.
Robert J, Wenthold +4 more
openaire +2 more sources
Down-regulation of NMDA receptor activity by NMDA
Neuroscience Letters, 1993Rat cerebellar granule cells were cultured in a medium containing 25 mM KCl. The presence of NMDA during culture caused strong down-regulation of 45Ca uptake through the NMDA receptor channel. The process affected neither the viability nor the protein content of the cells. The developmental program of NMDA receptor activity was resumed after removal of
Y, Oster, M, Schramm
openaire +2 more sources
Biochemistry (Moscow)
Astrocytic NMDA receptors (NMDARs) are heterotetramers, whose expression and properties are largely determined by their subunit composition. Astrocytic NMDARs are characterized by a low sensitivity to magnesium ions and low calcium conductivity. Their activation plays an important role in the regulation of various intracellular processes, such as gene ...
Artem M, Kosenkov +2 more
openaire +2 more sources
Astrocytic NMDA receptors (NMDARs) are heterotetramers, whose expression and properties are largely determined by their subunit composition. Astrocytic NMDARs are characterized by a low sensitivity to magnesium ions and low calcium conductivity. Their activation plays an important role in the regulation of various intracellular processes, such as gene ...
Artem M, Kosenkov +2 more
openaire +2 more sources

