Results 151 to 160 of about 1,094,037 (343)

pH‐Tunable Material Properties of Glycine‐Rich Condensates from Tick Bioadhesive

open access: yesAdvanced Functional Materials, EarlyView.
This work studies the influence of pH on the phase separation behavior of a disordered glycine‐rich protein found in tick bioadhesive. The results show profound impact on the propensity of coacervation, condensate microstructure and viscosity, amphiphilicity of the peptides, and effective encapsulation of therapeutic molecules.
Manali Nandy   +5 more
wiley   +1 more source

Chemoselective Sequential Polymerization: An Approach Toward Mixed Plastic Waste Recycling

open access: yesAdvanced Functional Materials, EarlyView.
Inspired by biological protein metabolism, this study demonstrates the closed‐loop recycling of mixed synthetic polymers via ring‐closing depolymerization followed by a chemoselective sequential polymerizations process. The approach recovers pure polymers from mixed feedstocks, even in multilayer formats, highlighting a promising strategy to overcome a
Gadi Slor   +5 more
wiley   +1 more source

Microarray-Based Nucleic Acid Assay and MALDI-TOF MS Analysis for the Detection of Gram-Negative Bacteria in Direct Blood Cultures [PDF]

open access: bronze, 2018
Seon Young Kim   +12 more
openalex   +1 more source

Bead Loading Proteins and Nucleic Acids into Adherent Human Cells [PDF]

open access: bronze, 2021
Charlotte Cialek   +4 more
openalex   +1 more source

Bimetallic Nanoreactor Activates cGAS‐STING Pathway via mtDNA Release for Cancer Metalloimmunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
A bimetallic Mn–Ca nanoreactor (MCC) is developed as a non‐nucleotide STING nanoagonist for cancer metalloimmunotherapy. MCC induces Ca2+ overload and hydroxyl radical generation, resulting in mitochondrial damage and mtDNA release. The released mtDNA cooperates with Mn2+ to robustly activate cGAS–STING signaling.
Xin Wang Mo   +7 more
wiley   +1 more source

4D Mapping of ZIF Biocomposites for High Protein Loading and Tunable Release Profiles

open access: yesAdvanced Functional Materials, EarlyView.
Systematic four‐dimensional mapping of zeolitic imidazolate framework biocomposites reveals how precursor ratios, total concentration, and washing define crystalline phase, protein loading, and release kinetics. This comprehensive study identifies conditions yielding record loading (∼85%) and precise phase–property correlations.
Michael R. Hafner   +12 more
wiley   +1 more source

Nucleic acids as terapeutic agent [PDF]

open access: yes, 2015
S rozvojem molekulární biologie dochází i k rozvoji v onkoterapii. Hlavním směrem moderní medicíny je genová terapie. V genové terapii jsou používány dvě kategorie vektorů, a to virové vektory a nevirové vektory.
Ráčková, Lucie
core  

Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase

open access: yesAdvanced Functional Materials, EarlyView.
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint   +6 more
wiley   +1 more source

Oral Dosed Organo‐Silica Nanoparticles Restore Glucose Homeostasis and β‐Cell Function in Diabetes Rats

open access: yesAdvanced Functional Materials, EarlyView.
An oral nanoplatform, MOP@T@D, which can maintain glucose homeostasis and restore islet β cells in diabetic rats is developed. It achieves efficient intestinal absorption and liver‐targeted delivery. The nanoparticle disintegrates only in response to hyperglycemia to release insulin on demand and provides antioxidant protection through selenoprotein ...
Chenxiao Chu   +14 more
wiley   +1 more source

RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA [PDF]

open access: hybrid, 2014
Cherilyn M. Sirois   +21 more
openalex   +1 more source

Home - About - Disclaimer - Privacy