Results 141 to 150 of about 4,878 (176)
openaire
openaire
openaire
openaire
openaire
Kantorovich inequality for positive operators on quaternionic Hilbert spaces
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Preeti Dharmarha, Ramkishan
openalex +3 more sources
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Characterizations of $\delta$--order associated with Kantorovich type operator inequalities
Scientiae Mathematicae Japonicae, 2005In this note, we obtain more precise estimations than the constants are given in the paper by M.Fujii, E.Kamei and Y.Seo, {; ; \it Kantorovich type operator inequalities via grand Furuta inequality}; ; , Sci. Math., {; ; \bf 3}; ; (2000), 263--272. Among other, we show that the following statements are mutually equivalent for each $\delta \in (0, 1]$: (
Mićić Hot, Jadranka, Pečarić, Josip
openaire +3 more sources
Results in Mathematics
The classical Szasz-Mirakjan operator is defined in [\textit{G. Mirakyan}, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 31, 201--205 (1941; Zbl 0025.04002)] and [\textit{O. Szasz}, J. Res. Natl. Bur. Stand. 45, No. 3, 239--245 (1950; Zbl 1467.41005)] for bounded functions \(f(x)\) in \([0,\infty ) \) by the formula \[S_{n} f(x)= S_{n } (f, x)= \sum_{k=0 ...
Ivan Gadjev +2 more
openaire +2 more sources
The classical Szasz-Mirakjan operator is defined in [\textit{G. Mirakyan}, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 31, 201--205 (1941; Zbl 0025.04002)] and [\textit{O. Szasz}, J. Res. Natl. Bur. Stand. 45, No. 3, 239--245 (1950; Zbl 1467.41005)] for bounded functions \(f(x)\) in \([0,\infty ) \) by the formula \[S_{n} f(x)= S_{n } (f, x)= \sum_{k=0 ...
Ivan Gadjev +2 more
openaire +2 more sources

