Results 191 to 200 of about 396,912 (271)

Cold Quad‐Modal Nanocomplex for Precise and Quantitative In Vivo Stem Cell Tracking

open access: yesAdvanced Functional Materials, EarlyView.
Multimodal albumin–bismuth sulfide–superparamagnetic iron oxide (ABS) nanocomplexes are developed for stem cell tracking across four different imaging modalities: MRI, MPI, MSOT, and CT. Combining its flexibility with high sensitivity, this quad‐modal imaging agent enables a robust quantification of ABS‐labeled stem cells in vivo.
Ali Shakeri‐Zadeh   +4 more
wiley   +1 more source

An Ionic Gelation Powder for Ultrafast Hemostasis and Accelerated Wound Healing

open access: yesAdvanced Functional Materials, EarlyView.
An ultrafast ionic gelation‐activated hemostatic powder (AGCL) forms a hydrogel within ≈1 s upon contact with blood‐derived calcium ions. The AGCL powder enables rapid hemorrhage control, strong tissue adhesion, and enhanced healing. The powder's pre‐crosslinked polymer network ensures high blood uptake and stability, offering effective treatment for ...
Youngju Son   +12 more
wiley   +1 more source

An Ultrafast Self‐Gelling Versatile Hydrogel for Rapid Infected Burn Wound Repair in Military Medicine

open access: yesAdvanced Functional Materials, EarlyView.
A self‐gelling PG@PAC (POD/Gel‐CDH@PA/CHX) powder is developed for infected burn care in austere settings. Upon contact with wound exudate, it instantly forms an adhesive hydrogel, providing simultaneous hemostasis, broad‐spectrum antibacterial activity, reactive oxygen species scavenging, and immunomodulation. In a murine model of S.
Liping Zhang   +14 more
wiley   +1 more source

Injectable Dual‐Network Hydrogel System for Osteochondral Repair Combining Immunomodulation, Mechanical Adaptability, and Enhanced Tissue Integration

open access: yesAdvanced Functional Materials, EarlyView.
A UV‐triggered injectable dual‐network hydrogel is reported as the first application of bletilla striata polysaccharide (BSP) in osteochondral repair. By integrating methacrylamide‐modified BSP and nitrobenzaldehyde‐functionalized hyaluronic acid, the system achieves immunomodulation, mechanical reinforcement, and dynamic tissue adhesion, thereby ...
Jiaming Cui   +10 more
wiley   +1 more source

Nano‐ and Micro‐Sized Solid Materials Used as Antiviral Agents

open access: yesAdvanced Functional Materials, EarlyView.
Due to the rise of viral infections in humans and possible viral outbreaks, the use of nano‐ or micro‐sized materials as antiviral agents is rapidly increasing. This review explores their antiviral properties against RNA and DNA viruses, either as a prevention or a treatment tool, by delving into their mechanisms of action and how to properly assess ...
Orfeas‐Evangelos Plastiras   +6 more
wiley   +1 more source

Nanolayer‐Encapsulated Stretchable Liquid‐Metal Sheets for Thermal Management

open access: yesAdvanced Functional Materials, EarlyView.
A stretchable liquid metal sheet with both high thermal conductivity and mechanical flexibility is developed. Its trilayer structure, comprising copper‐particle‐dispersed gallium liquid metal encapsulated by styrene‐butadiene‐styrene nanosheets, shows 40.4 W m−1 K−1 conductivity, elongation exceeding 200%, and retention of 96% of its initial ...
Daisuke Kuse   +16 more
wiley   +1 more source

Individual and Occupational Differences in Perceived Organisational Culture of a Central Hospital in Vietnam. [PDF]

open access: yesBiomed Res Int, 2018
Nguyen Van H   +6 more
europepmc   +1 more source

Thermally Activated Delayed Fluorescence in Phase‐Separated Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
A supramolecular, phase‐separation driven strategy yields charge transfer (CT) complexes from alternating electron‐deficient pyromellitic diimide and electron‐rich 4,5‐dibromoveratrole. The resulting CT complexes self‐assemble into lamellar nanosheets with nanometer‐sized domains that exhibit thermally activated delayed fluorescence (TADF) at room ...
Bart W.L. van den Bersselaar   +8 more
wiley   +1 more source

MagPiezo: A Magnetogenetic Platform for Remote Activation of Endogenous Piezo1 Channels in Endothelial Cells

open access: yesAdvanced Functional Materials, EarlyView.
MagPiezo enables wireless activation of endogenous Piezo1 channels without genetic modification using 19 nm magnetic nanoparticles and low‐intensity magnetic fields. It generates torque forces at the piconewton scale to trigger mechanotransduction in endothelial cells, standing as a novel platform to interrogate and manipulate Piezo1 activity in vitro.
Susel Del Sol‐Fernández   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy