Results 61 to 70 of about 46,703 (308)

Bioinspired Stabilization of Fluorescent Au@SiO2 Tracers for Multimodal Biological Imaging

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates a bioinspired stabilization strategy for fluorescent gold‐silica nanoparticles. Inspired by natural biosilica maturation, high‐temperature calcination transforms the silica shells, preventing dissolution in cell culture media and intracellular environments.
Wang Sik Lee   +5 more
wiley   +1 more source

Bioinspired Polypeptide Dendrimer‐Modified Thin‐Film Composite Membranes for Selective Lithium‐Magnesium Separation with DFT Insights

open access: yesAdvanced Functional Materials, EarlyView.
We fabricated a biomimetic dendrimer‐modified thin‐film nanocomposite membrane with a coordination‐assisted ion‐selective interface. pH‐responsive polypeptide sites preferentially bind Mg2+ and promote Li+ permeation, as predicted by density functional theory calculations of metal‐ligand interactions.
Mehrasa Yassari   +7 more
wiley   +1 more source

Effect of yoga ocular exercises on intraocular pressure

open access: yesYoga-Mimamsa, 2019
Background: Glaucoma is the second leading cause of global blindness and is the leading cause of irreversible visual loss. Hence, it becomes very important in guiding the designs of glaucoma screening, treatment, and intraocular pressure (IOP) control ...
Satish Kumar Gupta, S Aparna
doaj   +1 more source

MagPiezo: A Magnetogenetic Platform for Remote Activation of Endogenous Piezo1 Channels in Endothelial Cells

open access: yesAdvanced Functional Materials, EarlyView.
MagPiezo enables wireless activation of endogenous Piezo1 channels without genetic modification using 19 nm magnetic nanoparticles and low‐intensity magnetic fields. It generates torque forces at the piconewton scale to trigger mechanotransduction in endothelial cells, standing as a novel platform to interrogate and manipulate Piezo1 activity in vitro.
Susel Del Sol‐Fernández   +7 more
wiley   +1 more source

Ultrasound‐Triggered Gelation for Restoring Biomechanical Properties of Degenerated Functional Spinal Units

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces an innovative approach to treating intervertebral disc degeneration using ultrasound‐triggered in situ hydrogel formation. Proof‐of‐concept experiments using optimized biomaterial and ultrasound parameters demonstrate partial restoration of biomechanical function and successful integration into degenerated disc tissue, offering a ...
Veerle A. Brans   +11 more
wiley   +1 more source

Experimental design applied to improve the efficiency and the performance of the reverse osmosis process

open access: bronze, 2021
Abdelilah Fatni   +5 more
openalex   +1 more source

OSMOSIS OF LIQUIDS. II [PDF]

open access: yesJournal of General Physiology, 1929
If only one substance S passes through a membrane, the nature of this membrane is not of importance with respect to the direction of the diffusion; this is namely determined only by the O.S.A. of the two liquids. If, however, more substances pass through a membrane, the nature of this membrane is of great importance.
openaire   +4 more sources

Highly Sensitive Oxidation‐Resistant Degradable Janus Piezoresistive Electronic Skin for Sustainable Wearable Electronics

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents a highly sensitive, oxidation‐resistant, biocompatible, and degradable Janus piezoresistive electronic skin for sustainable wearable electronics. The electronic skin exhibits sensitive and stable response across a broad pressure range, exceptional oxidation resistance, and Janus wettability.
Joon Kim   +5 more
wiley   +1 more source

Osmosis, hybridisation, symbiosis – From biophilia to interspecies regenerative design

open access: yesAgathón
This paper offers a reflection on a broader field of investigation developed through the activities of the NatureCity LAB at the University of Basilicata.
Chiara Rizzi
doaj   +1 more source

Home - About - Disclaimer - Privacy