Results 191 to 200 of about 2,139,028 (342)

Asymmetric ion-pairing catalysis.

open access: yesAngewandte Chemie, 2013
K. Brak, E. Jacobsen
semanticscholar   +1 more source

Naked cuticle is essential for Drosophila wing development beyond Wingless signaling

open access: yesFEBS Open Bio, EarlyView.
Naked cuticle (Nkd), a Wnt signaling inhibitor, assumes extensive roles in Drosophila wing development. Overexpressing Nkd causes smaller, crumpled wings, while also perturbing multiple signaling pathways and developmental genes. A specific region (R1S) is critical for Nkd's function as a signaling integrator, offering new insights for studying its ...
Rui Wang, Ping Wang
wiley   +1 more source

Impact of off-center diagonal profile depth pairing on gamma pass rates in portal dosimetry. [PDF]

open access: yesJ Radiat Res
Suzuki Y   +6 more
europepmc   +1 more source

TMC4 localizes to multiple taste cell types in the mouse taste papillae

open access: yesFEBS Open Bio, EarlyView.
Transmembrane channel‐like 4 (TMC4), a voltage‐dependent chloride channel, plays a critical role in amiloride‐insensitive salty taste transduction. TMC4 is broadly expressed in all mature taste cell types, suggesting a possible involvement of multiple cell types in this pathway.
Momo Murata   +6 more
wiley   +1 more source

Raman‐based label‐free microscopic analysis of the pancreas in living zebrafish larvae

open access: yesFEBS Open Bio, EarlyView.
Forward stimulated Raman scattering (F‐SRS) and epi coherent anti‐Stokes Raman scattering (E‐CARS) allow label‐free discrimination of distinct subcellular structures in the pancreas of living zebrafish larvae. Given the straightforward applicability, we anticipate broad implementation of Raman microscopy in other organs and across various biomedical ...
Noura Faraj   +3 more
wiley   +1 more source

Codon--anticodon pairing: the wobble hypothesis.

open access: yesJournal of Molecular Biology, 1966
F. Crick
semanticscholar   +1 more source

FGFR Like1 drives esophageal cancer progression via EMT, PI3K/Akt, and notch signalling: insights from clinical data and next‐generation sequencing analysis

open access: yesFEBS Open Bio, EarlyView.
Clinical analysis reveals significant dysregulation of FGFRL1 in esophageal cancer (EC) patients. RNAi‐coupled next‐generation sequencing (NGS) and in vitro study reveal FGFRL1‐mediated EC progression via EMT, PI3K/Akt, and Notch pathways. Functional assays confirm its role in tumor growth, migration, and invasion.
Aprajita Srivastava   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy