Results 231 to 240 of about 521,053 (283)

Disrupting Lipid Raft Microdomains to Block Polyploid Giant Cancer Cell Budding and Enhance Radiotherapy Response

open access: yesAdvanced Science, EarlyView.
Radiation induces polyploid giant cancer cells (PGCCs) that regenerate tumors through virus‐like budding. This process depends on a SNCG–FLOT2–CHMP4B signaling axis functioning in lipid raft microdomains. Disrupting these domains using statins or anti‐PCSK9 antibodies blocks PGCC budding, suppresses tumor repopulation, and enhances radiotherapy ...
Zheng Deng   +20 more
wiley   +1 more source

Creating Cell‐Based Hybrid Noodles for Sustainable and Nutrient‐Balanced Diets via a Serum‐Free and Animal‐Free 3D Co‐Differentiation System

open access: yesAdvanced Science, EarlyView.
This study develops a 3D co‐culture and co‐differentiation system for porcine muscle stem cells (pMuSCs) and mesenchymal stem cells (pMSCs) on edible starch‐based scaffolds. The system simultaneously generates myotubes and adipocytes without using serum or chemical inducers.
Xin Guan   +9 more
wiley   +1 more source

Cardiogenic Shock Patient Found to Have Cardiac Amyloidosis and Concurrent Multiple Myeloma. [PDF]

open access: yesJACC Case Rep
Jiang A   +6 more
europepmc   +1 more source

Genetic Control of Tissue Remodeling by a Non‐Coding SNP in ITGA8 Explains Carotenoid‐Based Color Polymorphism in Marine Mollusks

open access: yesAdvanced Science, EarlyView.
In this study, the orange‐muscle giant abalone (Haliotis gigantea) is used as a model to identify a non‐coding SNP that disrupts the interaction between ITGA8 pre‐mRNA and the splicing factor ILF2, leading to altered ITGA8 splicing. These splicing changes promote carotenoid accumulation in abalone muscle through the regulation of tissue remodeling ...
Xiaohui Wei   +17 more
wiley   +1 more source

Compensatory Interplay Between Clarin‐1 and Clarin‐2 Deafness‐Associated Proteins Governs Phenotypic Variability in Hearing

open access: yesAdvanced Science, EarlyView.
Functional compensation between clarin‐1 and clarin‐2 in cochlear hair cells. Hearing loss associated with CLRN1 mutations shows striking phenotypic variability; however, the underlying mechanisms remain poorly understood. This study reveals that clarin‐1 and clarin‐2 function cooperatively in cochlear hair cells to sustain mechanoelectrical ...
Maureen Wentling   +17 more
wiley   +1 more source

Home - About - Disclaimer - Privacy