Results 221 to 230 of about 3,466,843 (390)

Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations

open access: yesAdvanced Functional Materials, EarlyView.
Highly selective chemistries are required for fabrication and post‐cross–linking modification of cell‐encapsulating hydrogels used in tissue engineering applications. Isonitrile ligation reactions represent a promising class of bioorthogonal chemistries for engineering hydrogel‐based cellular microenvironments. Isonitrile‐based hydrogels are stable and
Ping Zhou   +2 more
wiley   +1 more source

Multifunctional Hydroxyapatite Coated with Gallium Liquid Metal‐Based Silver Nanoparticles for Infection Prevention and Bone Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
A multifunctional hydroxyapatite (HAp) coating integrated with silver‐gallium liquid metal nanoparticles (HAp‐Ag‐GaNPs) exhibits dual antibacterial and osteogenic properties. It effectively inhibits Gram‐positive and Gram‐negative bacteria, including resistant strains, while enhancing bone regeneration.
Ngoc Huu Nguyen   +17 more
wiley   +1 more source

The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms

open access: yesScience Translational Medicine, 2018
A. de Breij   +16 more
semanticscholar   +1 more source

Optimizing Angiopep‐2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments

open access: yesAdvanced Functional Materials, EarlyView.
The Angiopep‐2 peptide density on polymeric nanoparticles significantly impacts blood–brain barrier (BBB) penetration. This study explores this nuanced relationship using various in vitro models and in vivo assays, revealing that dynamic models better predict BBB penetration.
Weisen Zhang   +9 more
wiley   +1 more source

Alleviation of Aging‐Related Hallmarks in a Mouse Model of Progeria via a Nanoparticle‐Based Artificial Transcription Factor

open access: yesAdvanced Functional Materials, EarlyView.
Oct4‐nanoscript, a biomimetic nanoparticle‐based artificial transcription factor, precisely regulates cellular rejuvenation by activating Oct4 target genes, restoring epigenetic marks, and reducing DNA damage. In a progeria model, it effectively rescued aging‐associated pathologies and extended lifespan.
Hongwon Kim   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy