Results 141 to 150 of about 1,280,007 (347)

A Comparative Analysis of a Multilevel Inverter Topology Based on Phase Disposition Sinusoidal Pulse Width Modulation [PDF]

open access: gold, 2023
Muhammad Hammad Uddin   +4 more
openalex   +1 more source

Therapeutic strategies for MMAE‐resistant bladder cancer through DPP4 inhibition

open access: yesMolecular Oncology, EarlyView.
We established monomethyl auristatin E (MMAE)‐resistant bladder cancer (BC) cell lines by exposure to progressively increasing concentrations of MMAE in vitro. RNA sequencing showed DPP4 expression was increased in MMAE‐resistant BC cells. Both si‐DPP4 and the DPP4 inhibitor sitagliptin suppressed the viability of MMAE‐resistant BC cells.
Gang Li   +10 more
wiley   +1 more source

Modulations of intermetallic B8-type phases [PDF]

open access: bronze, 1996
Sven Lidin, M. Elding, Lars Stenberg
openalex   +1 more source

Peroxidasin enables melanoma immune escape by inhibiting natural killer cell cytotoxicity

open access: yesMolecular Oncology, EarlyView.
Peroxidasin (PXDN) is secreted by melanoma cells and binds the NK cell receptor NKG2D, thereby suppressing NK cell activation and cytotoxicity. PXDN depletion restores NKG2D signaling and enables effective NK cell–mediated melanoma killing. These findings identify PXDN as a previously unrecognized immune evasion factor and a potential target to improve
Hsu‐Min Sung   +17 more
wiley   +1 more source

Redox regulation meets metabolism: targeting PRDX2 to prevent hepatocellular carcinoma

open access: yesMolecular Oncology, EarlyView.
PRDX2 acts as a central redox hub linking metabolic dysfunction‐associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC). In normal hepatocytes, PRDX2 maintains redox balance and metabolic homeostasis under oxidative stress. In contrast, during malignant transformation, PRDX2 promotes oncogenic signaling, stemness, and tumor initiation ...
Naroa Goikoetxea‐Usandizaga   +2 more
wiley   +1 more source

Dammarenediol II enhances etoposide‐induced apoptosis by targeting O‐GlcNAc transferase and Akt/GSK3β/mTOR signaling in liver cancer

open access: yesMolecular Oncology, EarlyView.
Etoposide induces DNA damage, activating p53‐dependent apoptosis via caspase‐3/7, which cleaves PARP1. Dammarenediol II enhances this apoptotic pathway by suppressing O‐GlcNAc transferase activity, further decreasing O‐GlcNAcylation. The reduction in O‐GlcNAc levels boosts p53‐driven apoptosis and influences the Akt/GSK3β/mTOR signaling pathway ...
Jaehoon Lee   +8 more
wiley   +1 more source

Targeting p38α in cancer: challenges, opportunities, and emerging strategies

open access: yesMolecular Oncology, EarlyView.
p38α normally regulates cellular stress responses and homeostasis and suppresses malignant transformation. In cancer, however, p38α is co‐opted to drive context‐dependent proliferation and dissemination. p38α also supports key functions in cells of the tumor microenvironment, including fibroblasts, myeloid cells, and T lymphocytes.
Angel R. Nebreda
wiley   +1 more source

Home - About - Disclaimer - Privacy