Results 71 to 80 of about 149 (149)
Pushing Radiative Cooling Technology to Real Applications
Radiative cooling controls surface optical properties for solar and thermal radiation, offering solutions for global warming and energy savings. Despite significant advances, key challenges remain: optimizing optical efficiency, maintaining aesthetics, preventing overcooling, enhancing durability, and enabling scalable production.
Chongjia Lin+8 more
wiley +1 more source
The rise of lead halide perovskite semiconductors has enabled high‐performance LEDs with internal quantum efficiencies approaching 100%. In order to further enhance the external quantum efficiencies limited by light outcoupling effects, in this account, the strategies for reducing energy dissipation through the substrate, waveguide, and evanescent ...
Tommaso Marcato+2 more
wiley +1 more source
This review explores how in situ and operando spectroscopic techniques reveal the real‐time behavior of reticular materials, including MOFs and COFs. These methods track material formation and functionalization, structural changes, defect formation, dynamic responses to external triggers, and catalytic processes.
Bettina Baumgartner+4 more
wiley +1 more source
Manipulating Ferroelectric Topological Polar Structures with Twisted Light
We demonstrate dynamic control of ferroelectric order in quasi‐2D CsBiNb2O7 using twisted ultraviolet light carrying orbital angular momentum. Our approach harnesses non‐resonant multiphoton absorption and induced strain to modulate topological of ferroelectric polarization textures.
Nimish P. Nazirkar+10 more
wiley +1 more source
Light‐Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals
The review covers the past and current developments in light‐emitting diodes (LEDs) exploiting nanocrystals of halide perovskites and perovskite‐related materials. The review examines the aspects of material optimizations, device engineering, and applications.
Ying Liu+7 more
wiley +1 more source
Van Der Waals Hybrid Integration of 2D Semimetals for Broadband Photodetection
Advanced broadband photodetector technologies are essential for military and civilian applications. 2D semimetals, with their gapless band structures, high mobility, and topological protection, offer great promise for broadband PDs. This study reviews the latest advancements in broadband PDs utilizing heterostructures that combine 2D semimetals with ...
Xue Li+9 more
wiley +1 more source
Photon Transport in Disordered Photonic Crystals
One of the daunting challenges in wave physics is to accurately control the flow of light at the subwavelength scale. By patterning the optical medium one can design anisotropic artificial medium, this engineering method is commonly known as photonic crystals or metamaterials.
openaire +3 more sources
This article summarizes significant technological advancements in materials, photonic devices, and bio‐interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on‐skin health monitoring.
Seunghyeb Ban+5 more
wiley +1 more source
This review highlights recent progress in piezoelectric materials for regenerative medicine, emphasizing their ability to convert mechanical stimuli into bioelectric signals that promote tissue repair. Key discussions cover the intrinsic piezoelectric properties of biological tissues, co‐stimulation cellular mechanisms for tissue regeneration, and ...
Xinyu Wang+3 more
wiley +1 more source
Self‐assembled amphiphilic phosphonate‐based supramolecule functions as a perovskite crystallization‐driven template at SnO2/perovskite buried interface, which induces a highly preferred (100) orientation toward out‐of‐plane direction, facilitates carrier extraction and transfer, passivates the intrinsic defects, and achieves a promising efficiency of ...
Zhenrong Wang+22 more
wiley +1 more source