Results 211 to 220 of about 5,169,486 (343)

Droplet Triboelectrification on Liquid‐Like Polymer Brushes

open access: yesAdvanced Functional Materials, EarlyView.
This work investigates the triboelectrification of water droplets on polymer brush‐coated surfaces exhibiting minimal contact line pinning. Such surfaces enable the systematic study of electrode patterning and controlled changes in droplet contact area.
Mohammad Soltani   +5 more
wiley   +1 more source

Intrinsically Soft Printed Electronics for Digitally Augmented Human Sensing and Vision

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a class of highly functional, multilayer flexible and stretchable circuits capable of digitally augmenting human sensing and vision. Studies in multi‐material soft composite inks yielded a formulation that enables overpass printing, self‐healing, and high‐resolution functionality.
Nathan Zavanelli   +7 more
wiley   +1 more source

Planet formation: The case for large efforts on the computational side [PDF]

open access: green, 2019
Wladimir Lyra   +56 more
openalex   +1 more source

Self‐Reconstruction of Dual‐Morphology Copper‐Iron Selenides for Cost‐Effective Oxygen Evolution Toward Industrial Alkaline Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
Departing from conventional Ni/Co‐based catalysts, this work presents a Ni/Co‐free CuFe–Se/CFF electrocatalyst with nanoblock–nanorod morphology. It delivers 1000 mA cm−2 at 330 mV overpotential and 620 h stability for the oxygen evolution reaction (OER).
Jiajun Wang   +7 more
wiley   +1 more source

Dual‐Atom Dopants Activated Ruthenium Single‐Atom Alloy Boosting Hydrogen Evolution Electrocatalysis in Proton Exchange Membrane Water Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
Ni1‐Bi1 dual‐atom dopants are achieved for activating Ru lattices without blocking noble atoms. This model exhibits an ultralow overpotential of 11.4 mV and superb stability at 10 mA cm−2 toward hydrogen evolution reaction, enabling a proton exchange membrane water electrolyzer that needs only 2.233 V to reach 3.0 A cm−2 and operates stably at 1.0 A cm−
Shuiping Luo   +17 more
wiley   +1 more source

All‐Aqueous Pullulan Fibers Enabling Visible‐to‐Near‐Infrared Waveguiding with Mechanical and Thermal Resilience

open access: yesAdvanced Functional Materials, EarlyView.
Pullulan, a biomass‐derived polysaccharide, is transformed into transparent optical fibers using a solvent‐free borax hydrogel‐spinning method. The fibers outperform PMMA with ≈200 MPa tensile strength and 200 °C stability, while uniquely guiding visible‐to‐NIR light and enabling additive‐free humidity sensing.
Yuya Fukata   +4 more
wiley   +1 more source

Theory‐Guided Design of Non‐Precious Single‐Atom Catalyst for Electrocatalytic Chlorine Evolution

open access: yesAdvanced Functional Materials, EarlyView.
To overcome the reliance on noble metals for the chlorine evolution reaction (CER), we designed a non‐precious single‐atom catalyst (SAC), NiN3O–O. It achieves a low overpotential of 75 mV, 95.8% Cl2 selectivity, and outperforms commercial dimensionally stable anodes (DSAs).
Kai Ma   +9 more
wiley   +1 more source

Modulating Interfacial Potential Gradients in Metal−Carbon Catalysts via Phase‐Engineering for Lithium–Sulfur Batteries

open access: yesAdvanced Functional Materials, EarlyView.
It is elucidated that phase engineering of cobalt modulates the interfacial potential gradients of cobalt–carbon electrocatalysts, enhancing the intrinsic electrocatalytic performance. Modulating the dominant crystalline phase of cobalt from a hexagonal close‐packed to a face‐centered cubic enriches the electron density of carbon shells, thereby ...
Ji‐Oh Kim   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy