Results 111 to 120 of about 61,933 (277)
This study indicates that Merkel cell carcinoma (MCC) does not originate from Merkel cells, and identifies gene, protein & cellular expression of immune‐linked and neuroendocrine markers in primary and metastatic Merkel cell carcinoma (MCC) tumor samples, linked to Merkel cell polyomavirus (MCPyV) status, with enrichment of B‐cell and other immune cell
Richie Jeremian +10 more
wiley +1 more source
YAP1::TFE3 mediates endothelial‐to‐mesenchymal plasticity in epithelioid hemangioendothelioma
The YAP1::TFE3 fusion protein drives endothelial‐to‐mesenchymal transition (EndMT) plasticity, resulting in the loss of endothelial characteristics and gain of mesenchymal‐like properties, including resistance to anoikis, increased migratory capacity, and loss of contact growth inhibition in endothelial cells.
Ant Murphy +9 more
wiley +1 more source
Leveraging Image Analysis for High-Throughput Plant Phenotyping
The complex interaction between a genotype and its environment controls the biophysical properties of a plant, manifested in observable traits, i.e., plant's phenome, which influences resources acquisition, performance, and yield.
Sruti Das Choudhury +4 more
doaj +1 more source
Development of a high-throughput system for phenotyping rice roots traits [PDF]
A CIRAD project (Orytage) involving NARES and IRC partners aims at developing an international phenotyping network for rice adaptations to drought and thermal stresses in the context of gene discovery and genetic mapping.
Audebert, Alain +4 more
core
Emerging role of ARHGAP29 in melanoma cell phenotype switching
This study gives first insights into the role of ARHGAP29 in malignant melanoma. ARHGAP29 was revealed to be connected to tumor cell plasticity, promoting a mesenchymal‐like, invasive phenotype and driving tumor progression. Further, it modulates cell spreading by influencing RhoA/ROCK signaling and affects SMAD2 activity. Rho GTPase‐activating protein
Beatrice Charlotte Tröster +3 more
wiley +1 more source
Modeling hepatic fibrosis in TP53 knockout iPSC‐derived human liver organoids
This study developed iPSC‐derived human liver organoids with TP53 gene knockout to model human liver fibrosis. These organoids showed elevated myofibroblast activation, early disease markers, and advanced fibrotic hallmarks. The use of profibrotic differentiation medium further amplified the fibrotic signature seen in the organoids.
Mustafa Karabicici +8 more
wiley +1 more source
Extending Hyperspectral Imaging for Plant Phenotyping to the UV-Range
Previous plant phenotyping studies have focused on the visible (VIS, 400−700 nm), near-infrared (NIR, 700−1000 nm) and short-wave infrared (SWIR, 1000−2500 nm) range. The ultraviolet range (UV, 200−380 nm) has not yet been used in
Anna Brugger +8 more
doaj +1 more source
ARIGAN: Synthetic Arabidopsis Plants using Generative Adversarial Network
In recent years, there has been an increasing interest in image-based plant phenotyping, applying state-of-the-art machine learning approaches to tackle challenging problems, such as leaf segmentation (a multi-instance problem) and counting.
Giuffrida, Mario Valerio +2 more
core +1 more source
This study characterizes the responses of primary acute myeloid leukemia (AML) patient samples to the MCL‐1 inhibitor MIK665. The results revealed that monocytic differentiation is associated with MIK665 sensitivity. Conversely, elevated ABCB1 expression is a potential biomarker of resistance to the treatment, which can be overcome by the combination ...
Joseph Saad +17 more
wiley +1 more source
Aggressive prostate cancer is associated with pericyte dysfunction
Tumor‐produced TGF‐β drives pericyte dysfunction in prostate cancer. This dysfunction is characterized by downregulation of some canonical pericyte markers (i.e., DES, CSPG4, and ACTA2) while maintaining the expression of others (i.e., PDGFRB, NOTCH3, and RGS5).
Anabel Martinez‐Romero +11 more
wiley +1 more source

