Results 261 to 270 of about 348,774 (324)

Enhancing cap-independent translation of linear mRNA. [PDF]

open access: yesNat Commun
Golojuch S   +3 more
europepmc   +1 more source

Si Inhibited Osteoclastogenesis: The Role of Fe and the Fenton Reaction

open access: yesAdvanced Healthcare Materials, EarlyView.
Silicate (Si) inhibition of osteoclastogenesis, is mediated by Fe. Si chemical interactions with Fe inhibit the Fenton reaction and intercellular ROS availability. This reduction in ROS availability inhibits osteoclastogenesis. The addition of Fe, in Si‐inhibited osteoclast cultures, restores the Fenton reaction, and osteoclastogenesis.
Yutong Li   +7 more
wiley   +1 more source

Bone‐Derived dECM Hydrogels Support Tunable Microenvironments for In Vitro Osteogenic Differentiation

open access: yesAdvanced Healthcare Materials, EarlyView.
A tunable methacrylated decellularized bone matrix hydrogel (dECM‐MA) is developed to support 3D culture of human osteoblasts. The hydrogel preserves bone‐specific ECM cues and allows precise control over mechanical properties. This system provides a customizable platform for studying osteogenic differentiation and modeling bone tissue environments for
Minne Dekker   +5 more
wiley   +1 more source

A nucleoporin-associated signaling cascade controls plant immunity via histone modification. [PDF]

open access: yesGenome Biol
Pan L   +10 more
europepmc   +1 more source

A Human Neural Tube Model Using 4D Self‐Folding Smart Scaffolds

open access: yesAdvanced Healthcare Materials, EarlyView.
Induced pluripotent stem cells (iPSCs) exhibit features comparable to the inner cell mass of the human embryo. iPSCs are applied to a novel self‐folding 4D‐Neural Tube (4D‐NT) structure that mimics the neurulation process. This 4D‐NT model recapitulates early events of human neural development and represents a platform to explore neurodevelopmental ...
Claudia Dell'Amico   +8 more
wiley   +1 more source

A Novel Core–Shell Hydrogel 3D Model for Studying Macrophage Mechanosensing and Foreign Body Giant Cell Formation

open access: yesAdvanced Healthcare Materials, EarlyView.
The foreign body response (FBR) to biomaterials is primarily driven by macrophages, which often fuse into destructive foreign body giant cells (FBGCs). To address the limited understanding of FBGC formation, a novel microscale core–shell hydrogel 3D model is developed using heterogeneous alginate‐collagen microcapsules with varying stiffness, offering ...
Manisha Mahanty   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy