Results 181 to 190 of about 82,174 (302)

Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner   +9 more
wiley   +1 more source

Interconnected Porous Hydrogels with Tunable Anisotropy Through Aqueous Emulsion Bioprinting

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bioprintable microporous bioink is developed using an aqueous two‐phase system (ATPS) composed of extracellular matrix (ECM) mimetic biopolymers. The ATPS bioink enables the fabrication of interconnected porous architectures with up to 70% porosity, supporting long‐term cell viability and 3D cell alignment, enabling a simultaneous generation of ...
Hugo Edgar‐Vilar   +4 more
wiley   +1 more source

A Biologically‐Architected Wear and Damage‐Resistant Nanoparticle Coating From the Radular Teeth of Cryptochiton stelleri

open access: yesAdvanced Functional Materials, EarlyView.
The ultrahard teeth of mollusks that feed on rocky substrates contain a wear‐resistant coating on their surfaces consisting of densely packed mesocrystalline magnetic nanoparticles within an organic matrix. These coatings display significant hardness and toughness through their highly controlled mesocrystalline architectures.
Taifeng Wang   +7 more
wiley   +1 more source

Living Liquid Metal Composites Embedded with Electrogenic Endospores for Next‐Generation Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley   +1 more source

Electron–Matter Interactions During Electron Beam Nanopatterning

open access: yesAdvanced Functional Materials, EarlyView.
This article reviews the electron–matter interactions important to nanopatterning with electron beam lithography (EBL). Electron–matter interactions, including secondary electron generation routes, polymer radiolysis, and electron beam induced charging, are discussed.
Camila Faccini de Lima   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy