Results 101 to 110 of about 333,594 (247)

Suppressing t(4;11) Acute Leukemia by Lipopolymer Nanoparticle Delivery of siRNA Targeting KMT2A::AFF1 with Enhanced Extrahepatic Delivery

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces a new lipopolymer nanoparticle (LPNP) system that efficiently delivers siRNA to leukemia cells. The LPNPs silence the leukemia fusion gene KMT2A::AFF1, induce apoptosis, and decrease leukemia burden in mice. These results demonstrate the potential of LPNPs as a targeted siRNA therapy for acute lymphoblastic leukemia.
Mohammad Nasrullah   +9 more
wiley   +1 more source

Advanced Nanoparticle Therapeutics for Targeting Neutrophils in Inflammatory Diseases

open access: yesAdvanced Healthcare Materials, EarlyView.
This review highlights recent advances in nanoparticle‐based strategies to modulate neutrophil activity in inflammatory diseases. By targeting inflammatory neutrophils, NET formation, and neutrophil apoptosis or recruitment, these approaches aim to improve therapeutic precision.
Min Ji Byun   +9 more
wiley   +1 more source

Antitumoral Efficacy of AuNRs‐Laden ECFCs In Vitro and In Vivo: Decoding the Heat and Rays Combo Treatment in Breast Cancer and Melanoma Cells

open access: yesAdvanced Healthcare Materials, EarlyView.
Endothelial Colony Forming Cells (ECFCs) acted as cellular cyborgs, stealthily transporting gold nanorods (AuNRs) into tumors to enable targeted near‐infrared (NIR) hyperthermia combined with radiotherapy. This approach triggers ferroptosis in melanoma and inhibits autophagy in breast cancer, revealing a tumor‐specific response to nanomaterial‐assisted
Cecilia Anceschi   +26 more
wiley   +1 more source

3D Bioprinted Renal Constructs Using Kidney‐Specific ECM Bioink System on Kidney Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
A kidney‐specific bioink derived from decellularized porcine kidney tissue supports the encapsulation, viability, and maturation of human primary kidney cells within 3D bioprinted constructs. In vivo, it also promotes the recruitment of host renal progenitor cells, collectively enhancing structural and functional regeneration of renal tissue.
Gabriel Carreno‐Galeano   +4 more
wiley   +1 more source

From Mechanoelectric Conversion to Tissue Regeneration: Translational Progress in Piezoelectric Materials

open access: yesAdvanced Materials, EarlyView.
This review highlights recent progress in piezoelectric materials for regenerative medicine, emphasizing their ability to convert mechanical stimuli into bioelectric signals that promote tissue repair. Key discussions cover the intrinsic piezoelectric properties of biological tissues, co‐stimulation cellular mechanisms for tissue regeneration, and ...
Xinyu Wang   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy