Results 221 to 230 of about 1,314,106 (300)

Controlled Magnesium Ion Delivery via Mg‐Sputtered Nerve Conduit for Enhancing Peripheral Nerve Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces a controllable degradation system for Mg‐based biomaterials using sputtering technology, marking a significant advancement in nerve regeneration research. The Mg‐sputtered nerve conduits demonstrate enhanced biocompatibility, biofunctionality, mechanical compatibility, and precise magnesium release, resulting in improved axonal ...
Hyewon Kim   +12 more
wiley   +1 more source

Structural Basis of Protein Kinase R Autophosphorylation. [PDF]

open access: yesBiochemistry, 2019
Mayo CB   +6 more
europepmc   +1 more source

Aging on Chip: Harnessing the Potential of Microfluidic Technologies in Aging and Rejuvenation Research

open access: yesAdvanced Healthcare Materials, EarlyView.
This review highlights recent advances in microfluidic technologies for modeling human aging and age‐related diseases. It explores how organ‐on‐chip platforms improve physiological relevance, enable rejuvenation strategies, facilitate drug screening, detect senescent cells, and identify biomarkers.
Limor Zwi‐Dantsis   +5 more
wiley   +1 more source

Enhanced Replication of Mouse Adenovirus Type 1 following Virus-Induced Degradation of Protein Kinase R (PKR) [PDF]

open access: gold, 2019
Danielle E. Goodman   +4 more
openalex   +1 more source

Progress of Immune‐Inducible Biomaterials for Post‐Ablation Cancers

open access: yesAdvanced Healthcare Materials, EarlyView.
The presence of residual tumors after ablative therapies poses a significant challenge, generally resulting in recurrence and metastases. This review offers a concise overview of immune‐inducible biomaterials from the perspective of the cancer‐immunity cycle, and how they enhance antitumor immunity through diverse mechanisms following ablative ...
Shuangshuang Zhao   +7 more
wiley   +1 more source

Si Inhibited Osteoclastogenesis: The Role of Fe and the Fenton Reaction

open access: yesAdvanced Healthcare Materials, EarlyView.
Silicate (Si) inhibition of osteoclastogenesis, is mediated by Fe. Si chemical interactions with Fe inhibit the Fenton reaction and intercellular ROS availability. This reduction in ROS availability inhibits osteoclastogenesis. The addition of Fe, in Si‐inhibited osteoclast cultures, restores the Fenton reaction, and osteoclastogenesis.
Yutong Li   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy