Results 101 to 110 of about 13,924,024 (337)

Systematic Targeting of Protein–Protein Interactions [PDF]

open access: yesTrends in Pharmacological Sciences, 2016
Over the past decade, protein-protein interactions (PPIs) have gone from being neglected as 'undruggable' to being considered attractive targets for the development of therapeutics. Recent advances in computational analysis, fragment-based screening, and molecular design have revealed promising strategies to address the basic molecular recognition ...
Ashley E, Modell   +2 more
openaire   +2 more sources

Hematopoietic (stem) cells—The elixir of life?

open access: yesFEBS Letters, EarlyView.
The aging of HSCs (hematopoietic stem cells) and the blood system leads to the decline of other organs. Rejuvenating aged HSCs improves the function of the blood system, slowing the aging of the heart, kidney, brain, and liver, and the occurrence of age‐related diseases.
Emilie L. Cerezo   +4 more
wiley   +1 more source

Sulforaphane Target Protein Prediction: A Bioinformatics Analysis

open access: yesApplied Sciences
Sulforaphane, a phytochemical found in cruciferous vegetables and various nutraceutical foods, plays a crucial role in promoting well-being and combating various diseases.
Francisco Alejandro Lagunas-Rangel
doaj   +1 more source

Scalable Production of Highly-Sensitive Nanosensors Based on Graphene Functionalized with a Designed G Protein-Coupled Receptor [PDF]

open access: yes, 2014
We have developed a novel, all-electronic biosensor for opioids that consists of an engineered mu opioid receptor protein, with high binding affinity for opioids, chemically bonded to a graphene field-effect transistor to read out ligand binding.
Crook, Alexander   +10 more
core   +4 more sources

Phosphatidylinositol 4‐kinase as a target of pathogens—friend or foe?

open access: yesFEBS Letters, EarlyView.
This graphical summary illustrates the roles of phosphatidylinositol 4‐kinases (PI4Ks). PI4Ks regulate key cellular processes and can be hijacked by pathogens, such as viruses, bacteria and parasites, to support their intracellular replication. Their dual role as essential host enzymes and pathogen cofactors makes them promising drug targets.
Ana C. Mendes   +3 more
wiley   +1 more source

Structural insights into lacto‐N‐biose I recognition by a family 32 carbohydrate‐binding module from Bifidobacterium bifidum

open access: yesFEBS Letters, EarlyView.
Bifidobacterium bifidum establishes symbiosis with infants by metabolizing lacto‐N‐biose I (LNB) from human milk oligosaccharides (HMOs). The extracellular multidomain enzyme LnbB drives this process, releasing LNB via its catalytic glycoside hydrolase family 20 (GH20) lacto‐N‐biosidase domain.
Xinzhe Zhang   +5 more
wiley   +1 more source

Baicalin target protein, Annexin A2, is a target of new antitumor drugs

open access: yesScientific Reports
Baicalin is a flavonoid extracted from Scutellaria baicalensis Georgi. As it has significant antitumor and apoptosis-inducing effects, baicalin may be useful as a lead compound in new antitumor drug development. However, as the pharmacological actions of
Yoshio Kusakabe   +4 more
doaj   +1 more source

The role and implications of mammalian cellular circadian entrainment

open access: yesFEBS Letters, EarlyView.
At their most fundamental level, mammalian circadian rhythms occur inside every individual cell. To tell the correct time, cells must align (or ‘entrain’) their circadian rhythm to the external environment. In this review, we highlight how cells entrain to the major circadian cues of light, feeding and temperature, and the implications this has for our
Priya Crosby
wiley   +1 more source

Manipulating subcellular protein localization to enhance target protein accumulation in minicells

open access: yesJournal of Biological Engineering
Background Minicells are chromosome-free derivatives of bacteria formed through irregular cell division. Unlike simplified structures, minicells retain all cellular components of the parent cell except for the chromosome. This feature reduces immunogenic
Junhyeon Park   +3 more
doaj   +1 more source

Molecular bases of circadian magnesium rhythms across eukaryotes

open access: yesFEBS Letters, EarlyView.
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley   +1 more source

Home - About - Disclaimer - Privacy