Results 281 to 290 of about 521,206 (335)

Integrative Omics Reveals Glutamine Catabolism‐Driven Apoptotic Suppression in Monocytes upon Mechanical Unloading

open access: yesAdvanced Science, EarlyView.
This research integrated multi‐omics analysis of bone tissue from HLU and control mice revealed that mechanical unloading suppresses intrinsic apoptosis and augments glutamine (Gln) catabolism in osteoclast lineage cells. The findings highlight pivotal roles for SLC1A5‐mediated Gln metabolism and XIAP/Diablo axis‐mediated apoptosis suppression.
Yi Ding   +14 more
wiley   +1 more source

The GGH/HuR Complex Binds and Stabilizes mRNAs to Maintain Tumor Cell Cycle and DNA Replication

open access: yesAdvanced Science, EarlyView.
Despite its canonical role in inhibiting DNA synthesis, GGH promotes tumor growth as a novel RNA‐binding protein. GGH binds GC‐rich 5′UTRs (e.g., CDC6/CCND1), recruits HuR to form a ternary complex that stabilizes mRNA via circular conformation, fueling DNA replication and the cell cycle. Targeting this axis suppresses NSCLC progression.
Yu Li   +9 more
wiley   +1 more source

5’‐Methylthioadenosine Metabolic Reprogramming Drives H3K79 Monomethylation‐Mediated PAK2 Upregulation to Promote Cadmium‐Induced Breast Cancer Progression by Impairing Autophagic Flux

open access: yesAdvanced Science, EarlyView.
Cadmium, a carcinogenic heavy metal, drives breast cancer progression via metabolic reprogramming and autophagic flux disruption. Multi‐omics revealed cadmium‐induced 5'‐methylthioadenosine depletion activates DOT1L‐mediated H3K79me1 at PAK2 promoter, upregulating PAK2 to block autophagy and driving malignancy. Clinically, 5'‐methylthioadenosine levels
Jingdian Li   +24 more
wiley   +1 more source

Advanced Microfluidics for Single Cell‐Based Cancer Research

open access: yesAdvanced Science, EarlyView.
Cutting‐edge microfluidic platforms are transforming single‐cell cancer research. This review highlights advanced technologies, from droplet microfluidics to tumour‐chips, that enable functional and spatial single‐cell analyses. By integrating biosensing, immune components, and patient‐derived materials, these systems offer new insights into tumour ...
Adriana Carneiro   +10 more
wiley   +1 more source

TBC1D22B Regulates ER‐to‐Golgi Trafficking via RAB1B Inactivation and Promotes Oncogenic Programs in Breast Cancer

open access: yesAdvanced Science, EarlyView.
TBC1D22B, a Golgi‐localized RabGAP linked to poor prognosis in breast cancer, inhibits ER‐to‐Golgi transport via RAB1B inactivation. This disrupts secretion, drives oncogenic transcriptional reprogramming, and promotes tumor growth. These findings indicate that TBC1D22B connects membrane trafficking to transcriptional control and cancer progression ...
Flavia Martino   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy